Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33414169

ABSTRACT

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Subject(s)
Acetate-CoA Ligase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Triple Negative Breast Neoplasms/drug therapy , Acetate-CoA Ligase/genetics , Acetate-CoA Ligase/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor/methods , Drug Stability , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Acids/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Mice, Inbred Strains , Molecular Docking Simulation , Molecular Targeted Therapy/methods , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...