Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Talanta ; 277: 126417, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38901191

ABSTRACT

Agronomic biofortification using selenium nanoparticles (SeNPs) shows potential for addressing selenium deficiency but further research on SeNPs-plants interaction is required before it can be effectively used to improve nutritional quality. In this work, single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) was used for tracing isotopically labeled SeNPs (82SeNPs) in Oryza sativa L. tissues. For this purpose, SeNPs with natural isotopic abundance and 82SeNPs were synthesized by a chemical method. The NPs characterization by transmission electron microscopy (TEM) confirmed that enriched NPs maintained the basic properties of unlabeled NPs, showing spherical shape, monodispersity, and sizes in the nano-range (82.8 ± 6.6 nm and 73.2 ± 4.4 nm for SeNPs and 82SeNPs, respectively). The use of 82SeNPs resulted in an 11-fold enhancement in the detection power for ICP-MS analysis, accompanied by an improvement in the signal-to-background ratio and a reduction of the size limits of detection from 89.9 to 39.9 nm in SP-ICP-MS analysis. This enabled 82SeNPs to be tracked in O. sativa L. plants cultivated under foliar application of 82SeNPs. Tracing studies combining SP-ICP-MS and TEM-energy-dispersive X-ray spectroscopy data confirmed the uptake of intact 82SeNPs by rice leaves, with most NPs remaining in the leaves and very few particles translocated to shoots and roots. Translocation of Se from leaves to roots and shoots was found to be lower when applied as NPs compared to selenite application. From the size distributions, as obtained by SP-ICP-MS, it can be concluded that a fraction of the 82SeNPs remained within the same size range as that of the applied NP suspension, while other fraction underwent an agglomeration process in the leaves, as confirmed by TEM images. This illustrates the potential of SP-ICP-MS analysis of isotopically enriched 82SeNPs for tracing NPs in the presence of background elements within complex plant matrices, providing important information about the uptake, accumulation, and biotransformation of SeNPs in rice plants.

2.
Nanomaterials (Basel) ; 13(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37686900

ABSTRACT

This paper describes methodology based on the application of isotope dilution (ID) in single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-ToFMS) mode for the mass determination (and sizing) of silver nanoparticles (AgNPs). For this purpose, and considering that the analytical signal in spICP-MS shows a transient nature, an isotope dilution equation used for online work was adapted and used for the mass determination of individual NPs. The method proposed measures NP isotope ratios in a particle-to-particle approach, which allows for the characterization of NP mass (and size) distributions and not only the mean size of the distribution. For the best results to be obtained, our method development (undertaken through the analysis of the reference material NIST RM 8017) included the optimization of the working conditions for the best precision and accuracy in isotope ratios of individual NPs, which had been only reported to date with multicollector instruments. It is shown that the precision of the measurement of these ratios is limited by the magnitude of the signals obtained for each NP in the mass analyzer (counting statistics). However, the uncertainty obtained for the sizing of NPs in this approach can be improved by careful method optimization, where the most important parameters are shown to be the selection of the spike isotopic composition and concentration. Although only AgNPs were targeted in this study, the method presented, with the corresponding adaptations, could be applied to NPs of any other composition that include an element with different naturally available isotopes.

3.
Nanomaterials (Basel) ; 13(12)2023 Jun 10.
Article in English | MEDLINE | ID: mdl-37368268

ABSTRACT

This paper proposes a novel approach to implement an internal standard (IS) correction in single particle inductively coupled plasma mass spectrometry (SP ICP-MS), as exemplified for the characterization of Au nanoparticles (NPs) in complex matrices. This approach is based on the use of the mass spectrometer (quadrupole) in bandpass mode, enhancing the sensitivity for the monitoring of AuNPs while also allowing for the detection of PtNPs in the same measurement run, such that they can serve as an internal standard. The performance of the method developed was proved for three different matrices: pure water, a 5 g L-1 NaCl water solution, and another water solution containing 2.5% (m/v) tetramethylammonium hydroxide (TMAH)/0.1% Triton X-100. It was observed that matrix-effects impacted both the sensitivity of the NPs and their transport efficiencies. To circumvent this problem, two methods were used to determine the TE: the particle size method for sizing and the dynamic mass flow method for the determination of the particle number concentration (PNC). This fact, together with the use of the IS, enabled us to attain accurate results in all cases, both for sizing and for the PNC determination. Additionally, the use of the bandpass mode provides additional flexibility for this characterization, as it is possible to easily tune the sensitivity achieved for each NP type to ensure that their distributions are sufficiently resolved.

4.
Anal Chim Acta ; 1205: 339738, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35414390

ABSTRACT

This paper presents a novel approach, based on the standard addition method, for overcoming the matrix effects that often hamper the accurate characterization of nanoparticles (NPs) in complex samples via single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). In this approach, calibration of the particle size is performed by two different methods: (i) by spiking a suspension of NPs standards of known size containing the analyte, or (ii) by spiking the sample with ionic standards; either way, the measured sensitivity is used in combination with the transport efficiency (TE) for sizing the NPs. Moreover, such transport efficiency can be readily obtained from the data obtained via both calibration methods mentioned above, so that the particle number concentration can also be determined. The addition of both ionic and NP standards can be performed on-line, by using a T-piece with two inlet lines of different dimensions. The smaller of the two is used for the standards, thus ensuring a constant and minimal sample dilution. As a result of the spiking of the samples, mixed histograms including the signal of the sample and that of the standards are obtained. However, the use of signal deconvolution approaches permits to extract the information, even in cases of signal populations overlapping. For proofing the concept, characterization of a 50 nm AuNPs suspension prepared in three different media (i.e., deionized water, 5% ethanol, and 2.5% tetramethyl ammonium hydroxide-TMAH) was carried out. Accurate results were obtained in all cases, in spite of the matrix effects detected in some media. Overall, the approach proposed offers flexibility, so it can be adapted to different situations, but it might be specially indicated for samples for which the matrix is not fully known and/or dilution is not possible/recommended.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Particle Size , Spectrum Analysis
5.
Anal Chim Acta ; 1077: 95-106, 2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31307726

ABSTRACT

In this work, the effects of using collision/reaction cell (CRC) technology in quadrupole-based ICP-MS (ICP-QMS) instrumentation operated in single-particle (SP) mode have been assessed. The influence of (i) various CRC gases, (ii) gas flow rates, (iii) nanoparticle (NP) sizes and (iv) NP types was evaluated using Ag, Au and Pt NPs with both a traditional ICP-QMS instrument and a tandem ICP-mass spectrometer. It has been shown that using CRC technology brings about a significant increase in the NP signal peak width (from 0.5 up to 6 ms). This effect is more prominent for a heavier gas (e.g., NH3) than for a lighter one (e.g., H2 or He). At a higher gas flow rate and/or for larger particle sizes >100 nm), the NP signal duration was prolonged to a larger extent. This effect of using CRC technology has been further demonstrated by characterizing custom-made 50 and 200 nm Fe3O4 NPs (originally strongly affected by the occurrence of spectral overlap) using different CRC approaches (H2 on-mass and NH3 mass-shift). The use of NH3 (monitoring of Fe as the Fe(NH3)2+ reaction product ion at m/z = 90 amu) induces a significant peak broadening compared to that observed when using H2 (6.10 ±â€¯1.60 vs. 0.94 ±â€¯0.49 ms). This extension of transit time can most likely be attributed to the collisions/interactions of the ion cloud generated by a single NP event with the CRC gas and it even precludes 50 nm Fe3O4 NPs to be detected when using the NH3 mass-shift approach. Based on these results, the influence of a longer peak width on the accuracy of SP-ICP-MS measurement data (NP size, particle number density and mass concentration) must be taken into account when using CRC technology as a means to overcome spectral overlap. To mitigate the potential detrimental effect of using CRC technology in the characterization of NPs via SP-ICP-MS(/MS), the use of light gases and low gas flow rates is recommended.

6.
Clin Chem Lab Med ; 55(8): 1178-1185, 2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28076302

ABSTRACT

BACKGROUND: The direct bilirubin (D-Bil) assay on the AU Beckman Coulter instrumentation can be interfered by paraproteins, which may result in spurious D-Bil results. In a previous work, we took advantage of this fact to detect this interference, thus helping with the identification of patients with unsuspected monoclonal gammopathies. In this work, we investigate the possibility to detect interference based on the review of the photometric reactions, regardless of the D-Bil result. METHODS: The D-Bil assay was carried out in a set of 2164 samples. It included a group of 164 samples with paraproteins (67 of which caused interference on the assay), as well as different groups of samples for which high absorbance background readings could also be expected (i.e. hemolyzed, lipemic, or icteric samples). Photometric reaction data were reviewed and receiver operating characteristics (ROC) curves were used to establish a cut-off for absorbance that best discriminates interference. RESULTS: The best cut-off was 0.0100 for the absorbance at the first photometric point of the complementary wavelength in the blank cuvette. Once the optimal cut-off for probable interference was selected, all samples analyzed in our laboratory that provided absorbance values above this cut-off were further investigated to try to discover paraproteins. During a period of 6 months, we detected 44 samples containing paraproteins, five of which belonged to patients with non-diagnosed monoclonal gammopathies. CONCLUSIONS: Review of the photometric reaction data permits the systematic detection of paraprotein interference on the D-Bil AU assay, even for samples for which reasonable results are obtained.


Subject(s)
Artifacts , Bilirubin/blood , Blood Chemical Analysis/methods , Paraproteins/chemistry , Photometry , Aged, 80 and over , Bilirubin/chemistry , Blood Chemical Analysis/instrumentation , Female , Humans , Infant, Newborn , Limit of Detection , Middle Aged , ROC Curve
7.
J Trace Elem Med Biol ; 39: 1-5, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27908399

ABSTRACT

BACKGROUND: Low serum Cu and ceruloplasmin (Cp) concentrations in newborns can be the first indication of a severe Cu deficient intake or, alternatively, of genetic diseases affecting Cu metabolism. However, Cu and Cp concentrations can also be influenced by other variables that render their quantitative results difficult to interpret. Therefore, it is necessary to identify these variables and stratify Cu and Cp concentrations according to these altering factors. METHODS: Serum Cu and Cp concentrations for 564 hospitalized newborns (0-12days of life) are stratified according to their age, prematurity (birth weight or gestational age), type of feeding and inflammatory state (assessed by the serum high sensitivity C-reactive protein (hs-CRP) level) to identify potential correlations. RESULTS: Serum Cu and Cp concentrations are influenced by all four variables analyzed, although inflammation is the most significant: the greater the hs-CRP concentration, the greater the serum Cu and Cp concentrations. Prematurity is also an important factor and preterm infants often show very low Cu and Cp concentrations. Age of life and type of feeding have in turn a more modest effect on these magnitudes, being slightly greater at 3-5days of age in breastfed newborns. CONCLUSIONS: Inflammation and prematurity are the main variables affecting serum Cu and Cp concentrations in newborns. Therefore, hs-CRP should always be assayed in parallel to Cu status. When there is an inflammatory state proper interpretation of these concentrations can be challenging.


Subject(s)
Copper/blood , Hospitalization , C-Reactive Protein/analysis , Ceruloplasmin/analysis , Humans , Infant, Newborn , Infant, Premature/blood , Inflammation/blood
8.
Talanta ; 162: 354-361, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27837840

ABSTRACT

This work investigates the possibilities of high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of Cl in solid samples via the CaCl molecule and measurement of its molecular absorption. The method proposed is based on addition of 400µg Ca as molecule-forming reagent and of 20µgPd as chemical modifier, which helps to stabilize the analyte and enhances sensitivity. The molecular spectrum for CaCl offers different lines with different limits of detection and linear ranges, which permitted to analyze solid samples with different Cl contents. The lowest limit of detection (0.75ng Cl, corresponding to 0.75µgg-1 for a typical sample mass of 1mg) could be achieved by combination of three of the most sensitive lines in the vicinity of 620.862nm, while the amplest linear range (up to 860ng Cl) was achieved by selection of the less sensitive line at 377.501nm. The method developed enabled the direct determination of Cl in solid samples using simple external calibration with aqueous standards. Good precision (5-9% RSD) and accuracy was attained in a series of certified samples of very different nature (i.e. coal, iron oxide, polyethylene, human hair, pine needles, rice flour and milk) and with very different Cl contents, ranging from about 50µgg-1 to 1% (w/w) Cl. The method appears as particularly useful for Cl determination in samples with elevated Ca contents, for which biased results with other diatomic molecules, such as AlCl or SrCl, may be obtained.

9.
Clin Chem Lab Med ; 54(8): 1329-35, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-26677886

ABSTRACT

BACKGROUND: Monoclonal (M) components can interfere with the direct bilirubin (D-Bil) assay on the AU Beckman Coulter instrumentation and produce spurious results, such as D-Bil values greater than total bilirubin (T-Bil) or very low/negative D-Bil values. If properly detected, this interference may uncover undiagnosed patients with monoclonal gammopathy (MG). METHODS: We investigated the interference rate on the D-Bil AU assay in serum samples known to contain M proteins along with their isotype and described the protocol set up in our laboratory to help with the diagnosis of MG based on D-Bil spurious results as first indication. RESULTS: During a period of 4 years, 15.4% (345 of 2235) of serum samples containing M immunoglobulins produced erroneous D-Bil results, although no clear relationship between the magnitude or isotype of the M component and interference could be found. In total 22 new patients were diagnosed with MG based on the analytical artefact with the D-Bil as first indication. CONCLUSIONS: The D-Bil interference from MG on the Beckman AU analysers needs to be made known to laboratories in order to prevent clinical confusion and/or additional workup to explain the origin of anomalous results. Although this information may not add to the management of existing patients with serum paraproteins, it can benefit patients that have not been diagnosed with MG by triggering follow up testing to determine if M components are present.


Subject(s)
Antibodies, Monoclonal/blood , Artifacts , Bilirubin/blood , Immunoassay , Immunoglobulins/blood , Paraproteinemias/blood , Paraproteinemias/diagnosis , Humans
10.
Pract Lab Med ; 4: 1-10, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-28856186

ABSTRACT

OBJECTIVES: Endogenous antibodies (EA) may interfere with immunoassays, causing erroneous results for hormone analyses. As (in most cases) this interference arises from the assay format and most immunoassays, even from different manufacturers, are constructed in a similar way, it is possible for a single type of EA to interfere with different immunoassays. Here we describe the case of a patient whose serum sample contains EA that interfere several hormones tests. We also discuss the strategies deployed to detect interference. SUBJECTS AND METHODS: Over a period of four years, a 30-year-old man was subjected to a plethora of laboratory and imaging diagnostic procedures as a consequence of elevated hormone results, mainly of pituitary origin, which did not correlate with the overall clinical picture. RESULTS: Once analytical interference was suspected, the best laboratory approaches to investigate it were sample reanalysis on an alternative platform and sample incubation with antibody blocking tubes. Construction of an in-house 'nonsense' sandwich assay was also a valuable strategy to confirm interference. In contrast, serial sample dilutions were of no value in our case, while polyethylene glycol (PEG) precipitation gave inconclusive results, probably due to the use of inappropriate PEG concentrations for several of the tests assayed. CONCLUSIONS: Clinicians and laboratorians must be aware of the drawbacks of immunometric assays, and alert to the possibility of EA interference when results do not fit the clinical pattern.

11.
Bioanalysis ; 7(16): 2057-70, 2015.
Article in English | MEDLINE | ID: mdl-26327185

ABSTRACT

BACKGROUND: DBS have become a clinical specimen especially adequate for establishing home-based collection protocols. In this work, high-resolution continuum source graphite furnace atomic absorption spectrometry is evaluated for the direct monitoring of Pb in DBS, both as a quantitative tool and a screening method. METHODOLOGY: The development of the screening model is based on the establishment of the unreliability region around the threshold limits, 100 or 50 µg l(-1). More than 500 samples were analyzed to validate the model. CONCLUSION: The screening method demonstrated high sensitivity (the rate of true positives detected was always higher than 95%), an excellent LOD (1 µg l(-1)) and high throughput (10 min per sample).


Subject(s)
Dried Blood Spot Testing/methods , Lead/blood , Spectrophotometry, Atomic/methods , Adult , Calibration , Female , Graphite , High-Throughput Screening Assays/methods , Humans , Infant, Newborn , Limit of Detection , Mass Screening/methods , Neonatal Screening/methods , Pregnancy , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Atomic/instrumentation
12.
Biol Trace Elem Res ; 153(1-3): 41-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23546894

ABSTRACT

Chronic stress exposure is associated with diverse negative health outcomes. It has been hypothesised that stress may also negatively affect the body's mineral status. This study investigates the association between chronic stress and long-term mineral concentrations of calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P) and zinc (Zn) in scalp hair among elementary school girls. Complete information on child-reported stress estimates (Coddington Life Events Scale (CLES)), hair cortisone and hair mineral concentrations, and predefined confounders in the stress-mineral relationship (i.e. age, body mass index, physical activity, diet, hair colour and parental education) was provided cross-sectionally for 140 girls (5-10 years old). The relationship between childhood stress measures (predictor) and hair minerals (outcome) was studied using linear regression analysis, adjusted for the abovementioned confounders. Hair cortisone concentrations were inversely associated with hair mineral concentrations of Ca, Mg, Zn and the Ca/P ratio. Children at risk by life events (CLES) presented an elevated Ca/Mg ratio. These findings were persistent after adjustment for confounders. This study demonstrated an independent association between chronic stress measures and hair mineral levels in young girls, indicating the importance of physiological stress-mineral pathways independently from individual or behavioural factors. Findings need to be confirmed in a more heterogeneous population and on longitudinal basis. The precise mechanisms by which stress alters hair mineral levels should be further elucidated.


Subject(s)
Hair/chemistry , Minerals/analysis , Stress, Psychological , Child , Child, Preschool , Cortisone/analysis , Cross-Sectional Studies , Female , Humans
13.
Anal Bioanal Chem ; 405(9): 2973-86, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23180083

ABSTRACT

Although in many cases Pb isotopic analysis can be relied on for provenance determination of ancient bronzes, sometimes the use of "non-traditional" isotopic systems, such as those of Cu and Sn, is required. The work reported on in this paper aimed at revising the methodology for Cu and Sn isotope ratio measurements in archaeological bronzes via optimization of the analytical procedures in terms of sample pre-treatment, measurement protocol, precision, and analytical uncertainty. For Cu isotopic analysis, both Zn and Ni were investigated for their merit as internal standard (IS) relied on for mass bias correction. The use of Ni as IS seems to be the most robust approach as Ni is less prone to contamination, has a lower abundance in bronzes and an ionization potential similar to that of Cu, and provides slightly better reproducibility values when applied to NIST SRM 976 Cu isotopic reference material. The possibility of carrying out direct isotopic analysis without prior Cu isolation (with AG-MP-1 anion exchange resin) was investigated by analysis of CRM IARM 91D bronze reference material, synthetic solutions, and archaeological bronzes. Both procedures (Cu isolation/no Cu isolation) provide similar δ (65)Cu results with similar uncertainty budgets in all cases (±0.02-0.04 per mil in delta units, k = 2, n = 4). Direct isotopic analysis of Cu therefore seems feasible, without evidence of spectral interference or matrix-induced effect on the extent of mass bias. For Sn, a separation protocol relying on TRU-Spec anion exchange resin was optimized, providing a recovery close to 100 % without on-column fractionation. Cu was recovered quantitatively together with the bronze matrix with this isolation protocol. Isotopic analysis of this Cu fraction provides δ (65)Cu results similar to those obtained upon isolation using AG-MP-1 resin. This means that Cu and Sn isotopic analysis of bronze alloys can therefore be carried out after a single chromatographic separation using TRU-Spec resin. Tin isotopic analysis was performed relying on Sb as an internal standard used for mass bias correction. The reproducibility over a period of 1 month (n = 42) for the mass bias-corrected Sn isotope ratios is in the range of 0.06-0.16 per mil (2 s), for all the ratios monitored.

14.
Biol Trace Elem Res ; 151(3): 335-43, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23254772

ABSTRACT

Literature has repeatedly shown a relationship between hair minerals and metabolic health, although studies in children are currently lacking. This study aims to investigate hair levels of calcium (Ca), copper (Cu), magnesium (Mg), iron (Fe), phosphorus (P), and zinc (Zn) and their association with (1) overweight/obesity and (2) metabolic health in Flemish elementary school girls between 5 and 10 years old. Two hundred eighteen girls participated in this study as part of the baseline ChiBS project. Children were subjected to physical examinations, blood and hair sampling. Hair minerals were quantitatively determined via inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion. Body mass index (BMI) and body fat percentage (BF%) were studied as anthropometric parameters, and a metabolic score (including systolic and diastolic blood pressure, insulin resistance and non-high-density lipoprotein (non-HDL) cholesterol as parameters) was calculated, with higher scores indicating a more unhealthy metabolic profile. Hair Ca, Ca/Mg, and Ca/P positively correlated with the anthropometric parameters. An inverse correlation was observed between Ca, Mg, and Ca/P in hair and the metabolic score. Inverse correlations were also observed for individual metabolic parameters (i.e., diastolic blood pressure, homeostasis model assessment for insulin resistance, non-HDL cholesterol). In particular, girls with a total number of three or more metabolic parameters above the age-specific 75th percentile showed significantly reduced hair Ca, Mg, and Ca/P concentrations. This study showed reduced hair mineral concentrations in young girls with a more unhealthy metabolic profile. Positive associations were observed between some minerals and BMI and BF%.


Subject(s)
Hair/chemistry , Hair/metabolism , Minerals/analysis , Minerals/metabolism , Students , Adipose Tissue , Belgium , Body Mass Index , Child , Child, Preschool , Female , Humans , Mass Spectrometry , Microwaves
15.
Anal Chem ; 84(20): 8682-90, 2012 Oct 16.
Article in English | MEDLINE | ID: mdl-22935036

ABSTRACT

Collection of biological fluids on clinical filter papers shows important advantages from a logistic point of view, although analysis of these specimens is far from straightforward. Concerning urine analysis, and particularly when direct trace elemental analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) is aimed at, several problems arise, such as lack of sensitivity or different distribution of the analytes on the filter paper, rendering obtaining reliable quantitative results quite difficult. In this paper, a novel approach for urine collection is proposed, which circumvents many of these problems. This methodology consists on the use of precut filter paper discs where large amounts of sample can be retained upon a single deposition. This provides higher amounts of the target analytes and, thus, sufficient sensitivity, and allows addition of an adequate internal standard at the clinical lab prior to analysis, therefore making it suitable for a strategy based on unsupervised sample collection and ulterior analysis at referral centers. On the basis of this sampling methodology, an analytical method was developed for the direct determination of several elements in urine (Be, Bi, Cd, Co, Cu, Ni, Sb, Sn, Tl, Pb, and V) at the low µg L(-1) level by means of LA-ICPMS. The method developed provides good results in terms of accuracy and LODs (≤1 µg L(-1) for most of the analytes tested), with a precision in the range of 15%, fit-for-purpose for clinical control analysis.


Subject(s)
Mass Spectrometry/instrumentation , Trace Elements/isolation & purification , Trace Elements/urine , Filtration/instrumentation , Humans , Laser Therapy/instrumentation , Limit of Detection , Paper
16.
Biol Trace Elem Res ; 150(1-3): 56-67, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22907558

ABSTRACT

Although evidence suggests that hair elements may reflect dietary habits and/or mineral intake, this topic remains controversial. This study therefore presents age-specific reference values for hair concentrations of Ca, Cu, Fe, Na, Mg, P and Zn using the LMS method of Cole, and investigates the relationship between dietary habits (i.e. food consumption frequencies) and hair mineral concentrations in 218 Belgian elementary school girls by reduced rank regression (RRR). Hair minerals were quantitatively determined via inductively coupled plasma-mass spectrometry after microwave-assisted acid digestion of 6-cm long vertex posterior hair samples. The Children's Eating Habits Questionnaire-Food Frequency Questionnaire was used to obtain information on food consumption frequency of 43 food items in the month preceding hair collection. The established reference ranges were in line with data for other childhood or adolescent populations. The retained RRR factors explained 40, 50, 45, 46, 44 and 48 % of the variation of Ca, Cu, Fe, Mg, P and Zn concentrations in hair, respectively. Although this study demonstrated that a large proportion of hair mineral variation may be influenced by food consumption frequencies in elementary school girls, a number of food groups known to be rich sources of minerals did not show a relation with certain hair minerals. Future research should focus on mechanisms and processes involved in mineral incorporation and accumulation in scalp hair, in order to fully understand the importance and influence of diet on hair minerals.


Subject(s)
Diet , Feeding Behavior , Hair/chemistry , Minerals/analysis , Belgium , Biomarkers/analysis , Child , Child Behavior , Child Development , Child, Preschool , Female , Follow-Up Studies , Health Surveys , Humans , Microwaves , Minerals/administration & dosage , Reference Values , Scalp , Spectrophotometry, Atomic , Surveys and Questionnaires
17.
Anal Chim Acta ; 648(1): 23-44, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19616687

ABSTRACT

In this review, the literature on the subject of electrothermal vaporization-inductively coupled plasma-mass spectrometry (ETV-ICP-MS) published during the last decade is reviewed with a double purpose: an evaluation of the possibilities of this technique for dealing with very challenging analytical applications on the one hand, and the establishment of a reference guide for method development in ETV-ICP-MS on the other. First, a brief introduction, pointing out the milestones in the development of the technique will provide the reader with a better understanding of the present situation of ETV-ICP-MS and its future perspective. After a section on the basic processes occurring in the furnace and during analyte transport, a guide for method development for challenging analytical applications is proposed, based on the existing literature. Next, the latest contributions in the main application areas of the field are reviewed, with special attention to the most challenging ones: i.e. speciation, "thermal" resolution, enabling complex matrixes to be analyzed and spectral overlap to be avoided, and the direct analysis of slurries and solid samples. Finally, the advantages obtained by coupling an ETV unit to newer types of ICP-MS instrumentation, equipped with collision/reaction cells, time-of-flight (TOF) or sector field (SF) spectrometers, are also discussed.


Subject(s)
Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Publishing , Temperature , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...