Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2800: 27-34, 2024.
Article in English | MEDLINE | ID: mdl-38709475

ABSTRACT

The plasma membrane is a vital component in cellular processes, and its structure has a significant impact on cellular behavior. The physical characteristics of the extracellular environment, along with the presence of surface pores, can influence the formation of membrane protrusions. Nanoporous surfaces have demonstrated their capacity to induce membrane protrusions in both adherent and non-adherent cells. This chapter presents a methodology that utilizes a nanoporous substrate with nanotopographical constraints to effectively stimulate the formation of membrane protrusions in cells.


Subject(s)
Surface Properties , Porosity , Humans , Cell Surface Extensions/ultrastructure , Cell Surface Extensions/metabolism , Cell Membrane/metabolism , Cell Adhesion , Animals
2.
J Mater Sci Mater Med ; 35(1): 2, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206428

ABSTRACT

Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip. Cell adhesion and proliferation were assessed to evaluate the biocompatibility of materials with different physical properties, while mechanical stimulation was performed to investigate shear-dependent calcium signaling in pre-osteoblasts. Moreover, the applicability of the UBoC platform in creating more complex in vitro models by culturing multiple cell types was demonstrated, establishing a dynamic multicellular environment to investigate cellular interfaces and their significance in biological processes. Overall, the UBoC presents an adaptable tool for in vitro evaluation of cellular behavior, offering opportunities for studying various biomaterials and cell interactions in microfluidic environments.


Subject(s)
Biocompatible Materials , Cell Communication , Cell Adhesion , Cell Culture Techniques , Lab-On-A-Chip Devices
3.
Biosensors (Basel) ; 12(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35323419

ABSTRACT

Nanodiamonds have emerged as promising agents for sensing and imaging due to their exceptional photostability and sensitivity to the local nanoscale environment. Here, we introduce a hybrid system composed of a nanodiamond containing nitrogen-vacancy center that is paired to a gold nanoparticle via DNA hybridization. Using multiphoton optical studies, we demonstrate that the harmonic mode emission generated in gold nanoparticles induces a coupled fluorescence emission in nanodiamonds. We show that the flickering of harmonic emission in gold nanoparticles directly influences the nanodiamonds' emissions, resulting in stochastic blinking. By utilizing the stochastic emission fluctuations, we present a proof-of-principle experiment to demonstrate the potential application of the hybrid system for super-resolution microscopy. The introduced system may find applications in intracellular biosensing and bioimaging due to the DNA-based coupling mechanism and also the attractive characteristics of harmonic generation, such as low power, low background and tissue transparency.


Subject(s)
Metal Nanoparticles , Nanodiamonds , Gold , Microscopy , Nitrogen
4.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34599101

ABSTRACT

T cells sense and respond to their local environment at the nanoscale by forming small actin-rich protrusions, called microvilli, which play critical roles in signaling and antigen recognition, particularly at the interface with the antigen presenting cells. However, the mechanism by which microvilli contribute to cell signaling and activation is largely unknown. Here, we present a tunable engineered system that promotes microvilli formation and T cell signaling via physical stimuli. We discovered that nanoporous surfaces favored microvilli formation and markedly altered gene expression in T cells and promoted their activation. Mechanistically, confinement of microvilli inside of nanopores leads to size-dependent sorting of membrane-anchored proteins, specifically segregating CD45 phosphatases and T cell receptors (TCR) from the tip of the protrusions when microvilli are confined in 200-nm pores but not in 400-nm pores. Consequently, formation of TCR nanoclustered hotspots within 200-nm pores allows sustained and augmented signaling that prompts T cell activation even in the absence of TCR agonists. The synergistic combination of mechanical and biochemical signals on porous surfaces presents a straightforward strategy to investigate the role of microvilli in T cell signaling as well as to boost T cell activation and expansion for application in the growing field of adoptive immunotherapy.


Subject(s)
Gene Expression/immunology , Lymphocyte Activation/immunology , Microvilli/immunology , T-Lymphocytes/immunology , Actins/immunology , Antigen-Presenting Cells/immunology , Cells, Cultured , Humans , Receptors, Antigen, T-Cell/immunology , Signal Transduction/immunology
5.
Nano Lett ; 21(1): 507-514, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33305952

ABSTRACT

When T-cells probe their environment for antigens, the bond between the T-cell receptor (TCR) and the peptide-loaded major histocompatibility complex (MHC) is put under tension, thereby influencing the antigen discrimination. Yet, the quantification of such forces in the context of T-cell signaling is technically challenging. Here, we developed a traction force microscopy platform which allows for quantifying the pulls and pushes exerted via T-cell microvilli, in both tangential and normal directions, during T-cell activation. We immobilized specific T-cell activating antibodies on the marker beads used to read out the hydrogel deformation. Microvilli targeted the functionalized beads, as confirmed by superresolution microscopy of the local actin organization. Moreover, we found that cellular components, such as actin, TCR, and CD45 reorganize upon interaction with the beads, such that actin forms a vortex-like ring structure around the beads and TCR is enriched at the bead surface, whereas CD45 is excluded from bead-microvilli contacts.


Subject(s)
Lymphocyte Activation , Traction , Receptors, Antigen, T-Cell , Signal Transduction , T-Lymphocytes
6.
ACS Nano ; 14(10): 12993-13003, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32914961

ABSTRACT

Nanopore sensing of single nucleotides has emerged as a promising single-molecule technology for DNA sequencing and proteomics. Despite the conceptual simplicity of nanopores, adoption of this technology for practical applications has been limited by a lack of pore size adjustability and an inability to perform long-term recordings in complex solutions. Here we introduce a method for fast and precise on-demand formation of a nanopore with controllable size between 2 and 20 nm through force-controlled adjustment of the nanospace formed between the opening of a microfluidic device (made of silicon nitride) and a soft polymeric substrate. The introduced nanopore system enables stable measurements at arbitrary locations. By accurately positioning the nanopore in the proximity of single neurons and continuously recording single-molecule translations over several hours, we have demonstrated this is a powerful approach for single-cell proteomics and secretomics.


Subject(s)
Nanopores , DNA , Nanotechnology , Sequence Analysis, DNA
7.
Nat Nanotechnol ; 14(8): 791-798, 2019 08.
Article in English | MEDLINE | ID: mdl-31308500

ABSTRACT

Proteins, nucleic acids and ions secreted from single cells are the key signalling factors that determine the interaction of cells with their environment and the neighbouring cells. It is possible to study individual ion channels by pipette clamping, but it is difficult to dynamically monitor the activity of ion channels and transporters across the cellular membrane. Here we show that a solid-state nanopore integrated in an atomic force microscope can be used for the stochastic sensing of secreted molecules and the activity of ion channels in arbitrary locations both inside and outside a cell. The translocation of biomolecules and ions through the nanopore is observed in real time in live cells. The versatile nature of this approach allows us to detect specific biomolecules under controlled mechanical confinement and to monitor the ion-channel activities of single cells. Moreover, the nanopore microscope was used to image the surface of the nuclear membrane via high-resolution scanning ion conductance measurements.


Subject(s)
Ion Channels/analysis , Ions/analysis , Microscopy, Atomic Force/instrumentation , Nanopores , Equipment Design , HEK293 Cells , Humans , Nanopores/ultrastructure , Single-Cell Analysis/instrumentation
8.
Anal Chem ; 90(19): 11453-11460, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30148616

ABSTRACT

We report here an advanced approach for simultaneous and independent submicroscale imaging of local surface charge and topography using microchanneled cantilevers, also known as FluidFM nanopipette probes. These hollow cantilevers with a 300 nm opening are employed for ion current measurements that provide access to the local properties of the electrical double layer using the phenomenon of ion current rectification, while also taking advantage of the force sensing capabilities for accurate probe vertical positioning and topography imaging. The independent nature of this atomic force microscope (AFM) feedback opens up a possibility to significantly increase the sensitivity for probing local surface charges in a wider range of salt concentrations, especially in electrolytes of low ionic strength (below 10 mM), where classical local ion conductance measurements with glass nanopipettes would suffer from inaccuracies and instabilities, but where the electrical double layer extends further into the liquid medium and has stronger effect on the measured ion currents for charge imaging. We demonstrate that the measurements with FluidFM do not compromise the positioning accuracy and enable accurate and simultaneous topographical and charge imaging in contact mode (similar to AFM) at high scanning rates, approaching thousands of pixels per second, therefore overtaking state-of-the-art techniques for charge mapping by at least 2 orders of magnitude (the probes reach translation rates of 120 µm s-1 equating to 2 ms per image pixel). We also reveal experimentally the physical limit of this high speed scanning, constrained by the rate of ion redistribution in surface-induced rectification required for double layer sensing and charge mapping.

9.
Small ; 14(28): e1801187, 2018 07.
Article in English | MEDLINE | ID: mdl-29882299

ABSTRACT

Plasmonically coupled graphene structures have shown great promise for sensing applications. Their complex and cumbersome fabrication, however, has prohibited their widespread application and limited their use to rigid, planar surfaces. Here, a plasmonic sensor based on gold nanowire arrays on an elastomer with an added graphene monolayer is introduced. The stretchable plasmonic nanostructures not only significantly enhance the Raman signal from graphene, but can also be used by themselves as a sensor platform for 2D strain sensing. These nanowire arrays on an elastomer are fabricated by template-stripping based nanotransfer printing, which enables a simple and fast production of stable nanogratings. The ultrasmooth surfaces of such transferred structures facilitate reliable large-area transfers of graphene monolayers. The resulting coupled graphene-nanograting construct exhibits ultrahigh sensitivity to applied strain, which can be detected by shifts in the plasmonic-enhanced Raman spectrum. Furthermore, this sensor enables the detection of adsorbed molecules on nonplanar surfaces through graphene-assisted surface enhanced Raman spectroscopy (SERS). The simple fabrication of the plasmonic nanowire array platform and the graphene-coupled devices have the potential to trigger widespread SERS applications and open up new opportunities for high-sensitivity strain sensing applications.

10.
Nat Commun ; 9(1): 835, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483582

ABSTRACT

Exposed to ionizing radiation, nanomaterials often undergo unusual transformations compared to their bulk form. However, atomic-level mechanisms of such transformations are largely unknown. This work visualizes and quantifies nanopore shrinkage in nanoporous alumina subjected to low-energy ion beams in a helium ion microscope. Mass transport in porous alumina is thus simultaneously induced and imaged with nanoscale precision, thereby relating nanoscale interactions to mesoscopic deformations. The interplay between chemical bonds, disorders, and ionization-induced transformations is analyzed. It is found that irradiation-induced diffusion is responsible for mass transport and that the ionization affects mobility of diffusive entities. The extraordinary room temperature superplasticity of the normally brittle alumina is discovered. These findings enable the effective manipulation of chemical bonds and structural order by nanoscale ion-matter interactions to produce mesoscopic structures with nanometer precision, such as ultra-high density arrays of sub-10-nm pores with or without the accompanying controlled plastic deformations.

11.
ACS Nano ; 12(3): 2514-2520, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29480710

ABSTRACT

Metal nanostructures are widely used in plasmonic and electronic applications due to their inherent properties. Often, the fabrication of such nanostructures is limited to small areas, as the processing is costly, low-throughput, and comprises harsh fabrication conditions. Here, we introduce a template-stripping based nanotransfer printing method to overcome these limitations. This versatile technique enables the transfer of arbitrary thin film metal structures onto a variety of substrates, including glass, Kapton, silicon, and PDMS. Structures can range from tens of nanometers to hundreds of micrometers over a wafer scale area. The process is organic solvent-free, multilayer compatible, and only takes minutes to perform. The stability of the transferred gold structures on glass exceeds by far those fabricated by e-beam evaporation. Therefore, an adhesion layer is no longer needed, enabling a faster and cheaper fabrication as well as the production of superior nanostructures. Structures can be transferred onto curved substrates, and the technique is compatible with roll-to-roll fabrication; thus, the process is suitable for flexible and stretchable electronics.

12.
Opt Lett ; 41(13): 3146-8, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367123

ABSTRACT

The highest resonant transmission through an array of holes perforated in metallic screens occurs when the dielectric constant of the substrate, the superstrate, and the hole are the same. Changes in the refractive index of the homogenous environment also produce the largest shift in resonances per refractive index unit. In this Letter, we first propose and apply a technique in realization of a freestanding bi-periodic array of holes perforated in a silver film. We then show both numerically and experimentally that shifts in (1,0) and (0,1) modes in response to changes in the refractive index of the surrounding dielectric provide a mechanism for realization of a miniaturized tunable quarter-wave plate that operates in an extraordinary optical transmission mode with a high throughput and a near unity state of circularly polarized light.

13.
ACS Appl Mater Interfaces ; 8(7): 4292-7, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26846250

ABSTRACT

Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 10(7) V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 10(6) V/cm; sufficient for ionization of wide range of molecules. These metal-insulator-metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy.

14.
Mater Sci Eng C Mater Biol Appl ; 61: 324-32, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26838856

ABSTRACT

Diamond has shown great potential in different biomedical applications, but the effects of sterilization on its properties have not been investigated. Here, we studied the influence of five sterilization techniques (solvent cleaning, oxygen plasma, UV irradiation, autoclave and hydrogen peroxide) on nitrogen-included ultrananocrystalline diamond. The chemical modification of the diamond surface was evaluated using X-ray photoelectron spectroscopy and water contact angle measurements. Different degrees of surface oxidation and selective sp(2) bonded carbon etching were found following all sterilization techniques, resulting in an increase of hydrophilicity. Higher viabilities of in vitro mouse 3T3 fibroblasts and rat cortical neuron cells were observed on oxygen plasma, autoclave and hydrogen peroxide sterilized diamond, which correlated with their higher hydrophilicity. By examination of apatite formation in simulated body fluid, in vivo bioactivity was predicted to be best on those surfaces which have been oxygen plasma treated and lowest on those which have been exposed to UV irradiation. The charge injection properties were also altered by the sterilization process and there appears to be a correlation between these changes and the degree of oxygen termination of the surface. We find that the modification brought by autoclave, oxygen plasma and hydrogen peroxide were most consistent with the use of N-UNCD in biological applications as compared to samples sterilized by solvent cleaning or UV exposure or indeed non-sterilized. A two-step process of sterilization by hydrogen peroxide following oxygen plasma treatment was then suggested. However, the final choice of sterilization technique will depend on the intended end application.


Subject(s)
Diamond/chemistry , Nanoparticles/chemistry , Nitrogen/chemistry , Sterilization/methods , 3T3 Cells , Animals , Cell Line , Cell Survival/drug effects , Diamond/pharmacology , Hot Temperature , Hydrogen Peroxide/chemistry , Hydrophobic and Hydrophilic Interactions , Lasers, Gas , Mice , Photoelectron Spectroscopy , Rats , Surface Properties , Ultraviolet Rays
15.
Materials (Basel) ; 8(8): 4992-5006, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-28793486

ABSTRACT

A highly-stable and biocompatible nanoporous electrode is demonstrated herein. The electrode is based on a porous anodic alumina which is conformally coated with an ultra-thin layer of diamond-like carbon. The nanocarbon coating plays an essential role for the chemical stability and biocompatibility of the electrodes; thus, the coated electrodes are ideally suited for biomedical applications. The corrosion resistance of the proposed electrodes was tested under extreme chemical conditions, such as in boiling acidic/alkali environments. The nanostructured morphology and the surface chemistry of the electrodes were maintained after wet/dry chemical corrosion tests. The non-cytotoxicity of the electrodes was tested by standard toxicity tests using mouse fibroblasts and cortical neurons. Furthermore, the cell-electrode interaction of cortical neurons with nanocarbon coated nanoporous anodic alumina was studied in vitro. Cortical neurons were found to attach and spread to the nanocarbon coated electrodes without using additional biomolecules, whilst no cell attachment was observed on the surface of the bare anodic alumina. Neurite growth appeared to be sensitive to nanotopographical features of the electrodes. The proposed electrodes show a great promise for practical applications such as retinal prostheses and bionic implants in general.

16.
Opt Express ; 22(13): 15530-41, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977811

ABSTRACT

A finite element method is applied to study the coupling between a nitrogen vacancy (NV) single photon emitter in nanodiamond and surface plasmons in a silver nanowire embedded in an alumina nanochannel template. We investigate the effective parameters in the coupled system and present detailed optimization for the maximum transmitted power at a selected optical frequency (650 nm). The studied parameters include nanowire length, nanowire diameter, distance between the dipole and the nanowire, orientation of the emitter and refractive index of the surrounding. It is found that the diameter of the nanowire has a strong influence on the propagation of the surface plasmon polaritons and emission power from the bottom and top endings of the nanowire.

SELECTION OF CITATIONS
SEARCH DETAIL
...