Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Pers Med ; 14(2)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38392640

ABSTRACT

The treatment of osseous defects around teeth is a fundamental concern within the field of periodontology. Over the years, the method of grafting has been employed to treat bone defects, underscoring the necessity for custom-designed scaffolds that precisely match the anatomical intricacies of the bone cavity to be filled, preventing the formation of gaps that could allow the regeneration of soft tissues. In order to create such a patient-specific scaffold (bone graft), it is imperative to have a highly detailed 3D representation of the bone defect, so that the resulting scaffold aligns with the ideal anatomical characteristics of the bone defect. In this context, this article implements a workflow for designing 3D models out of patient-specific tissue defects, fabricated as scaffolds with 3D-printing technology and bioabsorbable materials, for the personalized treatment of periodontitis. The workflow is based on 3D modeling of the hard tissues around the periodontal defect (alveolar bone and teeth), scanned from patients with periodontitis. Specifically, cone beam computed tomography (CBCT) data were acquired from patients and were used for the reconstruction of the 3D model of the periodontal defect. The final step encompasses the 3D printing of these scaffolds, employing Fused Deposition Modeling (FDM) technology and 3D-bioprinting, with the aim of verifying the design accuracy of the developed methodοlogy. Unlike most existing 3D-printed scaffolds reported in the literature, which are either pre-designed or have a standard structure, this method leads to the creation of highly detailed patient-specific grafts. Greater accuracy and resolution in the macroarchitecture of the scaffolds were achieved during FDM printing compared to bioprinting, with the standard FDM printing profile identified as more suitable in terms of both time and precision. It is easy to follow and has been successfully employed to create 3D models of periodontal defects and 3D-printed scaffolds for three cases of patients, proving its applicability and efficiency in designing and fabricating personalized 3D-printed bone grafts using CBCT data.

2.
Molecules ; 28(23)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-38067450

ABSTRACT

Higher plants possess the ability to synthesize a great number of compounds with many different functions, known as secondary metabolites. Polyphenols, a class of flavonoids, are secondary metabolites that play a crucial role in plant adaptation to both biotic and abiotic environments, including UV radiation, high light intensity, low/high temperatures, and attacks from pathogens, among others. One of the compounds that has received great attention over the last few years is luteolin. The objective of the current paper is to review the extraction and detection methods of luteolin in plants of the Greek flora, as well as their luteolin content. Furthermore, plant species, crop management and environmental factors can affect luteolin content and/or its derivatives. Luteolin exhibits various biological activities, such as cytotoxic, anti-inflammatory, antioxidant and antibacterial ones. As a result, luteolin has been employed as a bioactive molecule in numerous applications within the food industry and the biomedical field. Among the different available options for managing periodontitis, dental care products containing herbal compounds have been in the spotlight owing to the beneficial pharmacological properties of the bioactive ingredients. In this context, luteolin's anti-inflammatory activity has been harnessed to combat periodontal disease and promote the restoration of damaged bone tissue.


Subject(s)
Luteolin , Periodontal Diseases , Luteolin/pharmacology , Luteolin/therapeutic use , Greece , Plants , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Periodontal Diseases/drug therapy
3.
Int J Mol Sci ; 24(23)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38069075

ABSTRACT

Current clinical treatment of periodontitis alleviates periodontal symptoms and helps to keep the disease under control for extended periods. Despite this, a significant destruction of the tooth's underlying bone tissue often takes place progressively. Herein, we present a two-way therapeutic approach for local delivery of antibacterial agents and bone tissue regeneration, incorporating ~1% w/w tetracycline hydrochloride (TCH) into a 3D-printed scaffold composed of poly(ε-caprolactone) (PCL). Samples were assessed for their morphological, physicochemical, pharmacokinetic, and antibacterial properties. Furthermore, osteoprecursor cells (MC3T3-E1) were employed to evaluate the osteoinductive potential of the drug-loaded scaffolds. Cell proliferation, viability, and differentiation were determined on all cell-seeded scaffolds. At the end of the culture, PCL-TCH scaffolds promoted abundant collagen organic matrix, demonstrating augmented alkaline phosphatase (ALP) activity and areas of accumulated mineralised bone tissue, despite their belayed cell proliferation. Based on the observed effectiveness of the PCL-TCH scaffolds to inhibit Staphylococcus aureus, these constructs could serve as an alternative bioactive implant that supports bacterial inhibition and favours a 3D microenvironment for bone tissue regeneration in severe periodontitis.


Subject(s)
Periodontitis , Tissue Scaffolds , Humans , Tissue Scaffolds/chemistry , Tissue Engineering , Osteogenesis , Polyesters/chemistry , Bone and Bones , Anti-Bacterial Agents/pharmacology , Bone Regeneration , Tetracycline/pharmacology , Periodontitis/drug therapy , Printing, Three-Dimensional
4.
Front Pharmacol ; 13: 909285, 2022.
Article in English | MEDLINE | ID: mdl-35754463

ABSTRACT

Alkannin, shikonin (A/S) and their derivatives are naturally occurring hydroxynaphthoquinones biosynthesized in some species of the Boraginaceae family. These natural compounds have been extensively investigated for their biological properties over the last 40 years, demonstrating a plethora of activities, such as wound healing, regenerative, anti-inflammatory, antitumor, antimicrobial and antioxidant. This study aims to extend the current knowledge by investigating the effects of various A/S compounds on two model systems, namely on 3T3-L1 pre-adipocytes and the nematode Caenorhabditis elegans. The former constitutes an established in vitro model for investigating anti-obesity and insulin-mimetic properties, while the latter has been widely used as a model organism for studying fat accumulation, lifespan and the anthelmintic potential. A set of chemically well-defined A/S derivatives were screened for their effect on pre-adipocytes to assess cell toxicity, cell morphology, and cell differentiation. The differentiation of pre-adipocytes into mature adipocytes was examined upon treatment with A/S compounds in the presence/absence of insulin, aiming to establish a structure-activity relationship. The majority of A/S compounds induced cell proliferation at sub-micromolar concentrations. The ester derivatives exhibited higher IC50 values, and thus, proved to be less toxic to 3T3-L1 cells. The parent molecules, A and S tested at 1 µM resulted in a truncated differentiation with a reduced number of forming lipids, whereas compounds lacking the side chain hydroxyl group projected higher populations of mature adipocytes. In C. elegans mutant strain SS104, A/S enriched extracts were not able to inhibit the fat accumulation but resulted in a drastic shortage of survival. Thus, the set of A/S compounds were tested at 15 and 60 µg/ml in the wild-type strain N2 for their nematocidal activity, which is of relevance for the discovery of anthelmintic drugs. The most pronounced nematocidal activity was observed for naphthazarin and ß,ß-dimethyl-acryl-shikonin, followed by isovaleryl-shikonin. The latter 2 A/S esters were identified as the most abundant constituents in the mixture of A/S derivatives isolated from Alkanna tinctoria (L.) Tausch. Taken together, the findings show that the structural variations in the moiety of A/S compounds significantly impact the modulation of their biological activities in both model systems investigated in this study.

5.
Regen Biomater ; 8(3): rbab011, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34211727

ABSTRACT

The aim of this study was to investigate the potential of novel electrospun fiber mats loaded with alkannin and shikonin (A/S) derivatives, using as carrier a highly biocompatible, bio-derived, eco-friendly polymer such as poly[(R)-3-hydroxybutyric acid] (PHB). PHB fibers containing a mixture of A/S derivatives at different ratios were successfully fabricated via electrospinning. Αs evidenced by scanning electron microscopy, the fibers formed a bead-free mesh with average diameters from 1.25 to 1.47 µm. Spectroscopic measurements suggest that electrospinning marginally increases the amorphous content of the predominantly crystalline PHB in the fibers, while a significant drug amount lies near the fiber surface for samples of high total A/S content. All scaffolds displayed satisfactory characteristics, with the lower concentrations of A/S mixture-loaded PHB fiber mats achieving higher porosity, water uptake ratios, and entrapment efficiencies. The in vitro dissolution studies revealed that all samples released more than 70% of the encapsulated drug after 72 h. All PHB scaffolds tested by cell viability assay were proven non-toxic for Hs27 fibroblasts, with the 0.15 wt.% sample favoring cell attachment, spreading onto the scaffold surface, as well as cell proliferation. Finally, the antimicrobial activity of PHB meshes loaded with A/S mixture was documented for Staphylococcus epidermidis and S. aureus.

6.
Biomater Res ; 25(1): 23, 2021 Jul 16.
Article in English | MEDLINE | ID: mdl-34271983

ABSTRACT

BACKGROUND: Current research on skin tissue engineering has been focusing on novel therapies for the effective management of chronic wounds. A critical aspect is to develop matrices that promote growth and uniform distribution of cells across the wound area, and at the same time offer protection, as well as deliver drugs that help wound healing and tissue regeneration. In this context, we aimed at developing electrospun scaffolds that could serve as carriers for the bioactive natural products alkannin and shikonin (A/S). METHODS: A series of polymeric nanofibers composed of cellulose acetate (CA) or poly(ε-caprolactone) (PCL) and varying ratios of a mixture of A/S derivatives, has been successfully fabricated and their physico-chemical and biological properties have been explored. RESULTS: Scanning electron microscopy revealed a uniform and bead-free morphology for CA scaffolds, while for PCL beads along the fibers were observed. The average diameters for all nanofibers ranged between 361 ± 47 and 487 ± 88 nm. During the assessment of physicochemical characteristics, CA fiber mats exhibited a more favored profile, while the assessment of the biological properties of the scaffolds showed that CA samples containing A/S mixture up to 1 wt.% achieved to facilitate attachment, survival and migration of Hs27 fibroblasts. With respect to the antimicrobial properties of the scaffolds, higher drug-loaded (1 and 5 wt.%) samples succeeded in inhibiting the growth of Staphylococcus epidermidis and S. aureus around the edges of the fiber mats. Finally, carrying out a structure-activity relationship study regarding the biological activities (fibroblast toxicity/proliferation and antibacterial activity) of pure A/S compounds - present in the A/S mixture - we concluded that A/S ester derivatives and the dimeric A/S augmented cell proliferation after 3 days, whereas shikonin proved to be toxic at 500 nM and 1 µM and alkannin only at 1 µM. Additionally, alkannin, shikonin and acetyl-shikonin showed more pronounced antibacterial properties than the other esters, the dimeric derivative and the A/S mixture itself. CONCLUSIONS: Taken together, these findings indicate that embedding A/S derivatives into CA nanofibers might be an advantageous drug delivery system that could also serve as a potential candidate for biomedical applications in the field of skin tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...