Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Sci Rep ; 14(1): 11553, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773312

ABSTRACT

Knee osteoarthritis is a chronic joint disease mainly characterized by cartilage degeneration. The treatment is challenging due to the lack of blood vessels and nerve supplies in cartilaginous tissue, causing a prominent limitation of regenerative capacity. Hence, we investigated the cellular promotional and anti-inflammatory effects of sericin, Bombyx mori-derived protein, on three-dimensional chondrogenic ATDC5 cell models. The results revealed that a high concentration of sericin promoted chondrogenic proliferation and differentiation and enhanced matrix production through the increment of glycosaminoglycans, COL2A1, COL X, and ALP expressions. SOX-9 and COL2A1 gene expressions were notably elevated in sericin treatment. The proteomic analysis demonstrated the upregulation of phosphoglycerate mutase 1 and triosephosphate isomerase, a glycolytic enzyme member, reflecting the proliferative enhancement of sericin. The differentiation capacity of sericin was indicated by the increased expressions of procollagen12a1, collagen10a1, rab1A, periostin, galectin-1, and collagen6a3 proteins. Sericin influenced the differentiation capacity via the TGF-ß signaling pathway by upregulating Smad2 and Smad3 while downregulating Smad1, BMP2, and BMP4. Importantly, sericin exhibited an anti-inflammatory effect by reducing IL-1ß, TNF-α, and MMP-1 expressions and accelerating COL2A1 production in the early inflammatory stage. In conclusion, sericin demonstrates potential in promoting chondrogenic proliferation and differentiation, enhancing cartilaginous matrix synthesis through glycolysis and TGF-ß signaling pathways, and exhibiting anti-inflammatory properties.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrogenesis , Glycolysis , Inflammation , Sericins , Signal Transduction , Smad2 Protein , Smad3 Protein , Transforming Growth Factor beta , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Smad2 Protein/metabolism , Animals , Signal Transduction/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta/metabolism , Chondrogenesis/drug effects , Sericins/pharmacology , Glycolysis/drug effects , Mice , Inflammation/metabolism , Inflammation/pathology , Inflammation/drug therapy , Chondrocytes/metabolism , Chondrocytes/drug effects , Cell Line , Bombyx/metabolism
2.
Sci Rep ; 14(1): 5455, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38443583

ABSTRACT

Sericin, a natural protein derived from Bombyx mori, is known to ameliorate liver tissue damage; however, its molecular mechanism remains unclear. Herein, we aimed to identify the possible novel targets of sericin in hepatocytes and related cellular pathways. RNA sequencing analysis indicated that a low dose of sericin resulted in 18 differentially expressed genes (DEGs) being upregulated and 68 DEGs being downregulated, while 61 DEGs were upregulated and 265 DEGs were downregulated in response to a high dose of sericin (FDR ≤ 0.05, fold change > 1.50). Functional analysis revealed that a low dose of sericin regulated pathways associated with the complement and coagulation cascade, metallothionine, and histone demethylate (HDMs), whereas a high dose of sericin was associated with pathways involved in lipid metabolism, mitogen-activated protein kinase (MAPK) signaling and autophagy. The gene network analysis highlighted twelve genes, A2M, SERPINA5, MT2A, MT1G, MT1E, ARID5B, POU2F1, APOB, TRAF6, HSPA8, FGFR1, and OGT, as novel targets of sericin. Network analysis of transcription factor activity revealed that sericin affects NFE2L2, TFAP2C, STAT1, GATA3, CREB1 and CEBPA. Additionally, the protective effects of sericin depended on the counterregulation of APOB, POU2F1, OGT, TRAF6, and HSPA5. These findings suggest that sericin exerts hepatoprotective effects through diverse pathways at different doses, providing novel potential targets for the treatment of liver diseases.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Sericins , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sericins/pharmacology , TNF Receptor-Associated Factor 6 , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Gene Expression Profiling , Apolipoproteins B
3.
Mol Biol Rep ; 51(1): 316, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38376656

ABSTRACT

Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide, being responsible for about 3.5 million deaths so far. Despite ongoing investigations, there is still more to understand the mechanism of COVID-19 infection completely. However, it has been evidenced that SARS-CoV-2 can cause Coronavirus disease (COVID-19) notably in diabetic people. Approximately 35% of the patients who died of this disease had diabetes. A growing number of studies have evidenced that hyperglycemia is a significant risk factor for severe SARS-CoV-2 infection and plays a key role in COVID-19 mortality and diabetes comorbidity. The uncontrolled hyperglycemia can produce low-grade inflammation and impaired immunity-mediated cytokine storm that fail multiple organs and sudden death in diabetic patients with SARS-CoV-2 infection. More importantly, SARS-CoV-2 infection and interaction with ACE2 receptors also contribute to pancreatic and metabolic impairment. Thus, using of diabetes medications has been suggested to be beneficial in the better management of diabetic COVID-19 patients. Herbal treatments, as safe and affordable therapeutic agents, have recently attracted a lot of attention in this field. Accordingly, in this review, we intend to have a deep look into the molecular mechanisms of diabetic complications in SARS-CoV-2 infection and explore the therapeutic potentials of herbal medications and natural products in the management of diabetic COVID-19 patients based on recent studies and the existing clinical evidence.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Humans , COVID-19/complications , SARS-CoV-2 , Diabetes Mellitus/drug therapy , Pancreas
4.
Sci Rep ; 14(1): 2366, 2024 01 29.
Article in English | MEDLINE | ID: mdl-38287097

ABSTRACT

Sericin, a silk protein from Bombyx mori (silkworms), has many applications, including cosmetics, anti-inflammation, and anti-cancer. Sericin complexes with nanoparticles have shown promise for breast cancer cell lines. Apoptosis, a programmed cell death mechanism, stops cancer cell growth. This study found that Sericin urea extract significantly affected HCT116 cell viability (IC50 = 42.00 ± 0.002 µg/mL) and caused apoptosis in over 80% of treated cells. S-FTIR analysis showed significant changes in Sericin-treated cells' macromolecule composition, particularly in the lipid and nucleic acid areas, indicating major cellular modifications. A transcriptomics study found upregulation of the apoptotic signaling genes FASLG, TNFSF10, CASP3, CASP7, CASP8, and CASP10. Early apoptotic proteins also showed that BAD, AKT, CASP9, p53, and CASP8 were significantly upregulated. A proteomics study illuminated Sericin-treated cells' altered protein patterns. Our results show that Sericin activated the extrinsic apoptosis pathway via the caspase cascade (CASP8/10 and CASP3/7) and the death receptor pathway, involving TNFSF10 or FASLG, in HCT116 cells. Upregulation of p53 increases CASP8, which activates CASP3 and causes HCT116 cell death. This multi-omics study illuminates the molecular mechanisms of Sericin-induced apoptosis, sheds light on its potential cancer treatment applications, and helps us understand the complex relationship between silk-derived proteins and cellular processes.


Subject(s)
Bombyx , Sericins , Animals , Humans , Sericins/metabolism , HCT116 Cells , Caspase 3/metabolism , Proteomics , Tumor Suppressor Protein p53/metabolism , Silk/metabolism , Bombyx/genetics , Gene Expression Profiling
5.
J Biomed Mater Res B Appl Biomater ; 112(1): e35343, 2024 01.
Article in English | MEDLINE | ID: mdl-38006291

ABSTRACT

A thin plastic-like film separated from the epidermis of Cereus hildmannianus has excellent tensile strength, resistance to water and high antimicrobial activity and supports the growth of mouse fibroblast cells. Cactuses are one of the most under explored plant species with high potential for food, materials, pharmaceutical and other applications. Although studies have shown the ability of cactuses to be used for food, as a source for fibers, as reinforcement for composites and other applications, the role of individual layers and their properties has been studied to a limited extent. In this paper, a thin translucent layer was separated from the epidermis of C. hildmannianus and studied for its composition, structure and properties. The layer is composed of about 73% cellulose and 2% lignin and morphologically, shows surface with uneven and serrated edges. Films with length of up to 36 cm, strength of 6.8 MPa and elongation of 2.5% could be peeled from the cactus suggesting their suitability for food packaging and other applications. X-ray diffraction patterns and FTIR spectrums indicated that the films are similar to that of cellulose and major thermal degradation occurred above 280°C. Compared to standards, the cactus films showed about 41% and 44% inhibition against gram positive and gram negative bacteria and 67% inhibition of the common fungal strain (A. niger). Films showed high stability in water and to common chemicals. When used as substrates for mouse fibroblast cell growth, no cytotoxicity was observed and the cactus peel supported the attachment and proliferation of cells demonstrating potential to be used as a biomaterial for tissue engineering applications.


Subject(s)
Cactaceae , Tissue Engineering , Animals , Mice , Anti-Bacterial Agents/chemistry , Biomimetics , Gram-Negative Bacteria , Gram-Positive Bacteria , Cellulose/pharmacology , Cellulose/chemistry , Epidermis , Water/chemistry
6.
Explore (NY) ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38087747

ABSTRACT

INTRODUCTION: Hypertension is one of the most dangerous diseases. However, medicine for hypertension may cause adverse effects. Thus, alternative treatments may be beneficial to patients. The aims of the study were to evaluate efficacy and safety of sticker pads containing lavender and ylang ylang oil (LY pads) on decrease blood pressure. MATERIALS AND METHODS: The LY pads had been developed since 2018. The safety of LY pads in healthy volunteers' study and the efficacy and safety of LY pads in high blood pressure volunteers' study were conducted at Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand in October 2020 to December 2022. In the safety of LY pads in healthy volunteers' study, the LY pad was attached to the shirts of 56 healthy volunteers for 2 h. Adverse reactions, irritation score, and quality of life were assessed. In the efficacy and safety of the LY pads in high blood pressure volunteers' study, 34 high blood pressure volunteers were randomly divided into the LY group or the placebo group. The volunteers attached the pad to their shirt for 14 days. Blood pressure, pulse rate, and adverse reactions were investigated. RESULTS: The LY pad was safe for humans. Using the LY pad for 2 h had no significant adverse reactions in healthy volunteers. Moreover, it significantly improved quality of life (p<0.05). The blood pressure of the LY pad group after at least 3 days use was significantly lower than before using the pad (p<0.05). The systolic blood pressure difference and pulse rate difference were also superior in the LY pad group compared to the placebo group (p<0.05). CONCLUSIONS: The LY pad was safe in healthy volunteers and could reduce blood pressure in high blood pressure volunteers without adverse effects. Thus, it may be a supportive or alternative treatment for hypertension.

7.
Heliyon ; 9(11): e21563, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38027599

ABSTRACT

Urea cycle is an important metabolic process that initiates in liver mitochondria and converts ammonia to urea. The impairment of ammonia detoxification, both primary and secondary causes, lead to hyperammonemia, a life-threatening condition affecting to the brain. Current treatments are not enough effective. In addition, our recent proteomics study in hypercholesterolemic rat model demonstrated that sericin enhances hepatic nitrogenous waste removal through carbamoyl-phosphate synthase 1 (CPS-1), aldehyde dehydrogenase-2 (ALDH-2), and uricase proteins. However, the underlining mechanisms regard to this property is not clarified yet. Therefore, the present study aims to examine the effect of sericin on urea cycle enzyme genes (CPS-1 and ornithine transcarbamylase; OTC) and proteins (mitogen-activated protein kinase; MAPK, caspase recruitment domain-containing protein 9; CARD-9, Microtubule-associated protein light chain 3; LC-3), which relate to urea production and liver homeostasis in hepatic cell line (HepG2) and hypercholesterolemic rat treated with or without sericin. qRT-PCR, immunohistochemistry, and electron microscopy techniques were performed. In vitro study determined that high dose of sericin at 1 mg/ml increased liver detoxification enzyme (Cytochrome P450 1A2; CYP1A2 and ALDH-2) and urea cycle enzyme (CPS-1 and OTC) genes. Both in HepG2 cell and rat liver mitochondria, sericin significantly downregulated CARD-9 (apoptotic protein) expression while upregulated MAPK (hepatic homeostasis protein) and LC-3 (autophagic protein) expressions. Hence, it might be concluded that sericin promotes ammonia detoxification by both increases urea cycle enzyme genes and enhances hepatic autophagy in associated with CARD-9/MAPK pathway (as shown by their own negative relationship). This study presents another beneficial property of sericin to develop an upcoming candidate for ammonia toxicity alleviation and liver function improvement.

8.
Sci Rep ; 13(1): 12133, 2023 07 26.
Article in English | MEDLINE | ID: mdl-37495626

ABSTRACT

Therapeutic treatment forms can play significant roles in resolving psoriatic plaques or promoting wound repair in psoriatic skin. Considering the biocompatibility, mechanical strength, flexibility, and adhesive properties of silk fibroin sheets/films, it is useful to combine them with anti-psoriatic agents and healing stimulants, notably silk sericin. Here, we evaluate the curative properties of sericin-coated thin polymeric films (ScF) fabricated from silk fibroin, using an imiquimod-induced psoriasis rat model. The film biocompatibility and psoriatic wound improvement capacity was assessed. A proteomics study was performed to understand the disease resolving mechanisms. Skin-implantation study exhibited the non-irritation property of ScF films, which alleviate eczema histopathology. Immunohistochemical and gene expression revealed the depletion of ß-defensin, caspase-3 and -9, TNF-α, CCL-20, IL-1ß, IL-17, TGF-ß, and Wnt expressions and S100a14 mRNA level. The proteomics study suggested that ScF diminish keratinocyte proliferation via the mTOR pathway by downregulating mTOR protein, corresponding to the modulation of TNF-α, Wnt, and IL-1ß levels, leading to the enhancement of anti-inflammatory environment by IL-17 downregulation. Hematology data demonstrated the safety of using these biomaterials, which provide a potential therapeutic-option for psoriasis treatment due to desirable effects, especially anti-proliferation and anti-inflammation, functioning via the mTOR pathway and control of IL-17 signaling.


Subject(s)
Fibroins , Psoriasis , Sericins , Rats , Animals , Sericins/pharmacology , Sericins/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Fibroins/pharmacology , Fibroins/metabolism , Psoriasis/chemically induced , Psoriasis/drug therapy , Psoriasis/pathology , Skin/metabolism , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology , TOR Serine-Threonine Kinases/metabolism , Polymers/pharmacology , Keratinocytes/metabolism
9.
Biotechnol Bioeng ; 120(10): 2827-2839, 2023 10.
Article in English | MEDLINE | ID: mdl-37243890

ABSTRACT

Transgenic modification of Bombyx mori silkworms is a benign approach for the production of silk fibers with extraordinary properties and also to generate therapeutic proteins and other biomolecules for various applications. Silk fibers with fluorescence lasting more than a year, natural protein fibers with strength and toughness exceeding that of spider silk, proteins and therapeutic biomolecules with exceptional properties have been developed using transgenic technology. The transgenic modifications have been done primarily by modifying the silk sericin and fibroin genes and also the silk producing glands. Although the genetic modifications were typically performed using the sericin 1 and other genes, newer techniques such as CRISPR/Cas9 have enabled successful modifications of both the fibroin H-chain and L-chain. Such modifications have led to the production of therapeutic proteins and other biomolecules in reasonable quantities at affordable costs for tissue engineering and other medical applications. Transgenically modified silkworms also have distinct and long-lasting fluorescence useful for bioimaging applications. This review presents an overview of the transgenic techniques for modifications of B. mori silkworms and the properties obtained due to such modifications with particular focus on production of growth factors, fluorescent proteins, and high performance protein fibers.


Subject(s)
Bombyx , Fibroins , Animals , Bombyx/genetics , Bombyx/metabolism , Fibroins/genetics , Animals, Genetically Modified/genetics , Silk/genetics , Silk/metabolism , Fluorescence
11.
Nutrients ; 14(21)2022 Oct 28.
Article in English | MEDLINE | ID: mdl-36364802

ABSTRACT

Pre-diabetic or early-stage type 2 diabetes patients may develop an adverse diabetic progression, leading to several complications and increasing hospitalization rates. Mulberry leaves, which contain 1-deoxynojirimycin (DNJ), have been used as a complementary medicine for diabetes prevention and treatment. Our recent study demonstrated that mulberry leaf powder with 12 mg of DNJ improves postprandial hyperglycemia, fasting plasma glucose, and glycated hemoglobin. However, the detailed mechanisms are still unknown. This study investigates the effect of long-term (12-week) supplementation of mulberry leaves in obese people with prediabetes and patients with early-stage type 2 diabetes. Participants' blood was collected before and after supplementation. The protein profile of the plasma was examined by proteomics. In addition, the mitochondrial function was evaluated by energetic and homeostatic markers using immunoelectron microscopy. The proteomics results showed that, from a total of 1291 proteins, 32 proteins were related to diabetes pathogenesis. Retinol-binding protein 4 and haptoglobin protein were downregulated, which are associated with insulin resistance and inflammation, respectively. For mitochondrial function, the haloacid dehalogenase-like hydrolase domain-containing protein 3 (HDHD-3) and dynamin-related protein 1 (Drp-1) displayed a significant increment in the after treatment group. In summary, administration of mulberry leaf powder extract in prediabetes and the early stage of diabetes can alleviate insulin resistance and inflammation and promote mitochondrial function in terms of energy production and fission.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Morus , Prediabetic State , Humans , 1-Deoxynojirimycin/pharmacology , 1-Deoxynojirimycin/therapeutic use , 1-Deoxynojirimycin/metabolism , Diabetes Mellitus, Type 2/metabolism , Haptoglobins/metabolism , Inflammation/metabolism , Plant Extracts/metabolism , Plant Leaves/metabolism , Powders , Prediabetic State/metabolism
12.
J Wound Care ; 31(Sup8): S12-S21, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-36004939

ABSTRACT

OBJECTIVE: To explore the effects of pH on properties of polyvinyl alcohol (PVA)-ionic hydrogels containing wound healing promoters. METHOD: PVA was combined with a natural wound healing promoter (silk sericin (SS)), and an anionic agent (eosin (ES)) or cationic agent (methylene blue (MB)), and made into hydrogels. Properties of the hydrogels and behaviour at different pHs were investigated. RESULTS: The density and gel fraction of PVA/SS-ES hydrogel and PVA/SS-MB hydrogel were considerably lower compared with hydrogel without SS. The swelling ratio and degradation of the hydrogels increased with increasing SS concentration in all pH solutions. The influence of SS in interrupting long-chain PVA molecules was confirmed based on changes in Fourier-transform infrared spectroscopy (FTIR). The SS released from the gels was found to interact with the ionic agent and influenced the release profile of the ionic agent. Surprisingly, the anionic agent in PVA/SS-ES hydrogel showed 70% release in high pH solution whereas the cationic agent in PVA/SS-MB hydrogel showed 86% release in low pH solution. Moreover, the active agent could accumulate on the skin layer and had a positive effect on a specific wound area. CONCLUSION: Based on the results obtained in this study, it is suggested to use anionic hydrogels containing wound healing promoter for wounds at high pH and cationic hydrogels containing wound healing promoter for wounds with low pH. Ability to improve wound healing using a natural healing agent combined with ionic agents and controlling the pH of hydrogels will help in developing quick and low-cost treatment for wounds.


Subject(s)
Polyvinyl Alcohol , Wound Healing , Humans , Hydrogels/pharmacology , Skin/injuries
13.
J Wound Care ; 31(5): 406-423, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35579308

ABSTRACT

Wound dressing adherence is an important problem that is frequently encountered in wound care, and is associated with both clinical and economic burdens. However, only a few review articles have focused on this issue. The objective of this review was to present a comprehensive discussion of wound dressing adherence, including the mechanism of dressing adherence, adverse consequences (clinical burdens and economic burdens), factors affecting adherence (dressing-, patient- and wound-related factors, and factors related to the wound care procedure), tests to assess dressing adherence (in vitro assay, in vivo assay and clinical trials), and reduction of wound adherence (modification of dressing adherence and special care in particular patients). Accordingly, this review article emphasises an awareness of dressing adherence, and is intended to be an informative source for the development of new dressings and for wound management.


Subject(s)
Bandages , Wound Healing , Humans
14.
Pharm Biol ; 60(1): 708-721, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35348427

ABSTRACT

CONTEXT: Sericin is a component protein in the silkworm cocoon [Bombyx mori Linnaeus (Bombycidae)] that improves dysmorphic cardiac mitochondria under hypercholesterolemic conditions. This is the first study to explore cardiac mitochondrial proteins associated with sericin treatment. OBJECTIVE: To investigate the mechanism of action of sericin in cardiac mitochondria under hypercholesterolaemia. MATERIALS AND METHODS: Hypercholesterolaemia was induced in Wistar rats by feeding them 6% cholesterol-containing chow for 6 weeks. The hypercholesterolemic rats were separated into 2 groups (n = 6 for each): the sericin-treated (1,000 mg/kg daily) and nontreated groups. The treatment conditions were maintained for 4 weeks prior to cardiac mitochondria isolation. The mitochondrial structure was evaluated by immunolabeling electron microscopy, and differential mitochondrial protein expression was determined and quantitated by two-dimensional gel electrophoresis coupled with mass spectrometry. RESULTS: A 32.22 ± 2.9% increase in the percent striated area of cardiac muscle was observed in sericin-treated hypercholesterolemic rats compared to the nontreatment group (4.18 ± 1.11%). Alterations in mitochondrial proteins, including upregulation of optic atrophy 1 (OPA1) and reduction of NADH-ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) expression, are correlated with a reduction in mitochondrial apoptosis under sericin treatment. Differential proteomic observation also revealed that sericin may improve mitochondrial energy production by upregulating acetyl-CoA acetyltransferase (ACAT1) and NADH dehydrogenase 1α subcomplex subunit 10 (NDUFA10) expression. DISCUSSION AND CONCLUSIONS: Sericin treatment could improve the dysmorphic mitochondrial structure, metabolism, and energy production of cardiac mitochondria under hypercholesterolaemia. These results suggest that sericin may be an alternative treatment molecule that is related to cardiac mitochondrial abnormalities.


Subject(s)
Hypercholesterolemia , Sericins , Animals , Hypercholesterolemia/drug therapy , Mitochondria , Mitochondrial Dynamics , Proteomics/methods , Rats , Rats, Wistar , Sericins/chemistry , Sericins/metabolism , Sericins/pharmacology
15.
J Cosmet Dermatol ; 21(7): 2908-2915, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34658139

ABSTRACT

BACKGROUND: Cesarean section scars are post-surgical problems in women. Many active ingredients have been found to diminish scar formation. Clinical investigations on the onion extract have gained more attention due to its properties, such as improvement of scar appearance and texture. However, published studies evaluating the usefulness of the onion extract in the treatment of scars are controversial. METHODS: The three-month study period followed a prospective, randomized, and double-blinded design. Each enrolled subject's post-cesarean completely sealed wounds were divided into two halves along the closure axis. Each half was randomly assigned to the treatment with either silicone gel containing 5% onion extract or the silicone gel containing vitamin C. All subjects were respectively evaluated at the one, two, and three months of the treatment. RESULTS: After the three-month follow-up, there was a statistically significant difference in scar improvement between before and after treatment. None of statistically significant difference in the Patient and Observer Scar Assessment Scale (POSAS) and Vancouver Scar Scale (VSS) scores and melanin value was found between silicone gel containing 5% onion extract and the control silicone gel. However, the improvement of scar erythema by treatment with the silicone gel containing 5% onion extract was significantly greater than in the control group. No adverse effects were reported in either group.


Subject(s)
Cicatrix, Hypertrophic , Cicatrix , Cesarean Section/adverse effects , Cicatrix/drug therapy , Cicatrix/etiology , Cicatrix, Hypertrophic/drug therapy , Female , Gels/therapeutic use , Humans , Onions , Plant Extracts/adverse effects , Pregnancy , Prospective Studies , Silicone Gels/adverse effects , Treatment Outcome
16.
J Biomater Sci Polym Ed ; 33(2): 229-261, 2022 02.
Article in English | MEDLINE | ID: mdl-34521315

ABSTRACT

Hydroxyapatite (HA or HAp) is one of the most preferred biomaterials, specifically for bone tissue engineering. HAp is available naturally and is also chemically synthesized. The properties, shape, size and crystalline structure and applications of HAp vary widely depending on the source and extraction methods used. In addition to conventional chemical approaches such as precipitation or sol-gel techniques, newer methods such as microwave synthesis and atomic-layer deposition provide an opportunity to generate HAp with desirable structure and properties. Various methods used for the synthesis of HAp have their own pros and cons. Hence, it is essential to understand the role of specific methods and conditions on the properties and structure of HAps in order to obtain HAp with properties suitable for specific applications. In addition to pure HAp, substantial efforts have been made to dope HAp with various minerals or bioentities to enhance their suitability for medical, environmental remediation and other approaches. In this review, we provide an overview of the various chemical methods used to produce HAp, properties of the HAp produced and its potential applications. Particular focus of this paper is on the co-relation between properties and processes used to synthesis HAp. This review will enable readers to quickly understand the importance of synthesis methods and conditions on the properties of HAp and choose appropriate means to generate HAp with desired properties for specific applications.


Subject(s)
Durapatite , Tissue Engineering , Biocompatible Materials , Bone and Bones , Microwaves
17.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613589

ABSTRACT

The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.


Subject(s)
Psoriasis , Sericins , Rats , Animals , Sericins/pharmacology , Sericins/therapeutic use , Sericins/chemistry , Polyvinyl Alcohol/chemistry , Psoriasis/drug therapy , Hydrogels , Bandages
18.
ACS Omega ; 6(43): 28880-28889, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746580

ABSTRACT

Eugenol is a major phenolic component derived from clove oil with potential medical applications. Of particular interest, it has been used as a therapeutic agent in topical applications because of its analgesic and local anesthetic properties. However, topical formulations of eugenol produce skin irritation, which limits its clinical applications. One promising strategy to overcome this disadvantage is by using a biocompatible material that could be an appropriate topical vehicle for eugenol. Researchers have recently focused on the development of eugenol-embedded calcium citrate nanoparticles (Eu-CaCit NPs) without adverse effects. The Eu-CaCit NPs were developed as a topical delivery system and their biocompatibility and penetration ability were evaluated. Eu-CaCit NPs at 1.2 mg/mL did not show cytotoxicity effects in human cells. Moreover, the Eu-CaCit NPs presented the ability to penetrate the dermis layer of the human intact skin following 12 h exposure. All the results concluded that Eu-CaCit NPs have shown a potential as a carrier for topical delivery of eugenol. These novel nanoparticles represent a promising alternative for topical application of local anesthetic with natural pain relievers.

19.
J Tradit Complement Med ; 11(6): 570-580, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765521

ABSTRACT

BACKGROUND: Hyperpigmentation is a skin disorder, which is caused by an excess production of melanin. The reduction in melanin content without causing undesirable effects is required for the treatment of hyperpigmentation. Sericin is increasingly used as a hyperpigmentation treatment because of its antityrosinase activity. However, the various methods of sericin extraction have an effect on the composition and biological properties. The purpose of this study was to investigate the antioxidant and anti-melanogenic properties of sericin using different extraction methods including acid, base, heat, and urea extraction. METHODS: The chemical properties of extracted sericin were assessed in terms of amino acid components, thermal behavior, and UV-vis absorption. The inhibitory effects of sericin on melanogenesis were explored by determining the melanin content and cellular tyrosinase activity in B16F10 cells. RESULTS: Sericin from urea extraction provided different properties when compared with the other extraction methods. Our results indicate that urea-extracted sericin reduced the melanin content and cellular tyrosinase activity more effectively than the other extraction methods. Interestingly, the potential anti-melanogenic activity was more effective than kojic acid, a depigmenting agent used to treat hyperpigmentation. Moreover, treatment of urea-extracted sericin induced reactive oxygen species and subsequently activated antioxidant activity in B16F0 cells. CONCLUSIONS: Our results present the potential inhibitory effect of urea-extracted sericin on melanogenesis. The therapeutic potential of urea-extracted sericin can be used in the treatment of hyperpigmentation and its complications.

20.
J Tradit Complement Med ; 11(6): 587-597, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34765523

ABSTRACT

BACKGROUND AND AIM: Psoriasis is a skin disorder that leads to chronic inflammation and keratinocyte hyperproliferation. Sericin extracted from Bombyx mori cocoon has been demonstrated to possess anti-inflammatory and antiproliferative properties, which makes it a viable candidate for psoriasis treatment. This study aimed to investigate the therapeutic effect of sericin on skin psoriasis at the cellular level. EXPERIMENTAL PROCEDURE: Imiquimod-induced skin psoriasis was established in Sprague-Dawley rats. The rats with psoriasis were divided into 6 groups (n = 5), namely, one nontreatment control group and five groups that received different treatments: sericin (2.5%, 5%, and 10%), 0.1% betamethasone, 3 µg/ml calcitriol. The treatments were administered twice daily for 7 days, followed by skin sample collection. Epidermal improvement and protein expression were evaluated using histopathological and label-free proteomic approaches and immunohistochemistry. RESULTS AND CONCLUSION: Compared with other concentrations, 10% sericin had the desired effect of improving skin psoriasis as shown by reduced epidermal thickness, similar to the effects of betamethasone and calcitriol treatments. Anti-inflammatory activity was shown by decreased C-C motif chemokine 20 (CCL20) expression posttreatment. Proteomic observation revealed that sericin reduced cytokine production by Th17 cells by interfering with the JAK-STAT signaling pathway. Sericin treatment also resulted in a modulated immune response via upregulation of Galectin-3 (Lgals3) and downregulation of Sphingosine-1-phosphate lyase1 (Sgpl1). Sericin improved epithelial cell proliferation by upregulating Nucleoside diphosphate kinase B (Nme2). Therefore, the therapeutic effect of sericin on psoriasis correlated with a reduced immune response and attenuated epidermal proliferation, making sericin a promising approach for skin psoriasis treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...