Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Antioxidants (Basel) ; 13(3)2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38539900

ABSTRACT

Progressive respiratory airway destruction due to unresolved inflammation induced by periodic infectious exacerbation episodes is a hallmark of cystic fibrosis (CF) lung pathology. To clear bacteria, neutrophils release high amounts of reactive oxygen species (ROS), which inflict collateral damage to the neighboring epithelial cells causing oxidative stress. A former genome-wide small interfering RNA (siRNA) screening in CF submucosal gland cells, instrumental for mucociliary clearance, proposed tumor necrosis factor receptor superfamily member 1B (TNFRSF1B; TNFR2) as a potential hit involved in oxidative stress susceptibility. Here, we demonstrate the relevance of TNFRSF1B transcript knock-down for epithelial cell protection under strong oxidative stress conditions. Moreover, a blockade of TNFR signaling through its ligand lymphotoxin-α (LTA), overexpressed in airway epithelial cells under oxidative stress conditions, using the anti-tumor necrosis factor (TNF) biologic etanercept significantly increased the viability of these cells from a toxic oxidizing agent. Furthermore, bioinformatic analyses considering our previous RNA interference (RNAi) screening output highlight the relevance of TNFRSF1B and of other genes within the TNF pathway leading to epithelial cell death. Thus, the inhibition of the LTα3-TNFR2 axis could represent a useful therapeutic strategy to protect the respiratory airway epithelial lining from the oxidative stress challenge because of recurrent infection/inflammation cycles faced by CF patients.

2.
Pharmacol Res ; 197: 106948, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37806602

ABSTRACT

The most recent and promising therapeutic strategies for inflammatory bowel disease (IBD) have engaged biologics targeting single effector components involved in major steps of the immune-inflammatory processes, such as tumor necrosis factor, interleukins or integrins. Nevertheless, these molecules have not yet met expectations regarding efficacy and safety, resulting in a significant percentage of refractory or relapsing patients. Thus, novel treatment options are urgently needed. The minor isoform of the complement inhibitor C4b-binding protein, C4BP(ß-), has been shown to confer a robust anti-inflammatory and immunomodulatory phenotype over inflammatory myeloid cells. Here we show that C4BP(ß-)-mediated immunomodulation can significantly attenuate the histopathological traits and preserve the intestinal epithelial integrity in dextran sulfate sodium (DSS)-induced murine colitis. C4BP(ß-) downregulated inflammatory transcripts, notably those related to neutrophil activity, mitigated circulating inflammatory effector cytokines and chemokines such as CXCL13, key in generating ectopic lymphoid structures, and, overall, prevented inflammatory immune cell infiltration in the colon of colitic mice. PRP6-HO7, a recombinant curtailed analogue with only immunomodulatory activity, achieved a similar outcome as C4BP(ß-), indicating that the therapeutic effect is not due to the complement inhibitory activity. Furthermore, both C4BP(ß-) and PRP6-HO7 significantly reduced, with comparable efficacy, the intrinsic and TLR-induced inflammatory markers in myeloid cells from both ulcerative colitis and Crohn's disease patients, regardless of their medication. Thus, the pleiotropic anti-inflammatory and immunomodulatory activity of PRP6-HO7, able to "reprogram" myeloid cells from the complex inflammatory bowel environment and to restore immune homeostasis, might constitute a promising therapeutic option for IBD.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Colitis/chemically induced , Colitis/drug therapy , Immunomodulation , Inflammation , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Myeloid Cells
3.
Front Immunol ; 13: 883743, 2022.
Article in English | MEDLINE | ID: mdl-35547734

ABSTRACT

C4b-binding protein (C4BP) is a well-known regulator of the complement system that holds additional and important activities unrelated to complement inhibition. Recently, we have described a novel immunomodulatory activity in the minor C4BP(ß-) isoform directly acting over inflammatory phagocytes. Here we show that incorporation of the ß-chain to the C4BP α-chain oligomer interferes with this immunomodulatory activity of C4BP. Moreover, an oligomeric form including only the complement control protein 6 (CCP6) domain of the C4BP α-chain (PRP6-HO7) is sufficient to "reprogram" monocyte-derived DCs (Mo-DCs) from a pro-inflammatory and immunogenic phenotype to an anti-inflammatory and tolerogenic state. PRP6-HO7 lacks complement regulatory activity but retains full immunomodulatory activity over inflammatory Mo-DCs induced by TLRs, characterized by downregulation of relevant surface markers such as CD83, HLA-DR, co-stimulatory molecules such as CD86, CD80 and CD40, and pro-inflammatory cytokines such as IL-12 and TNF-α. Furthermore, PRP6-HO7-treated Mo-DCs shows increased endocytosis, significantly reduced CCR7 expression and CCL21-mediated chemotaxis, and prevents T cell alloproliferation. Finally, PRP6-HO7 shows also full immunomodulatory activity over Mo-DCs isolated from lupus nephritis patients with active disease, even without further pro-inflammatory stimulation. Therefore PRP6-HO7, retaining the immunomodulatory activity of C4BP(ß-) and lacking its complement regulatory activity, might represent a promising and novel alternative to treat autoimmune diseases.


Subject(s)
Complement C4b-Binding Protein , Lupus Nephritis , Complement C4b-Binding Protein/metabolism , Cytokines , Humans , Immunomodulation , Monocytes/metabolism
4.
Antioxidants (Basel) ; 10(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34943039

ABSTRACT

Recurrent infection-inflammation cycles in cystic fibrosis (CF) patients generate a highly oxidative environment, leading to progressive destruction of the airway epithelia. The identification of novel modifier genes involved in oxidative stress susceptibility in the CF airways might contribute to devise new therapeutic approaches. We performed an unbiased genome-wide RNAi screen using a randomized siRNA library to identify oxidative stress modulators in CF airway epithelial cells. We monitored changes in cell viability after a lethal dose of hydrogen peroxide. Local similarity and protein-protein interaction network analyses uncovered siRNA target genes/pathways involved in oxidative stress. Further mining against public drug databases allowed identifying and validating commercially available drugs conferring oxidative stress resistance. Accordingly, a catalog of 167 siRNAs able to confer oxidative stress resistance in CF submucosal gland cells targeted 444 host genes and multiple circuitries involved in oxidative stress. The most significant processes were related to alternative splicing and cell communication, motility, and remodeling (impacting cilia structure/function, and cell guidance complexes). Other relevant pathways included DNA repair and PI3K/AKT/mTOR signaling. The mTOR inhibitor everolimus, the α1-adrenergic receptor antagonist doxazosin, and the Syk inhibitor fostamatinib significantly increased the viability of CF submucosal gland cells under strong oxidative stress pressure. Thus, novel therapeutic strategies to preserve airway cell integrity from the harsh oxidative milieu of CF airways could stem from a deep understanding of the complex consequences of oxidative stress at the molecular level, followed by a rational repurposing of existing "protective" drugs. This approach could also prove useful to other respiratory pathologies.

5.
Int J Mol Sci ; 22(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34769025

ABSTRACT

Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding "on-target" and "off-target" side effects. In this "ncRNA in therapeutics" issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.


Subject(s)
Nucleic Acids/genetics , RNA, Untranslated/genetics , Animals , Biomarkers/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/therapy , Drug Delivery Systems/methods , Humans
6.
J Inflamm Res ; 13: 1057-1073, 2020.
Article in English | MEDLINE | ID: mdl-33293849

ABSTRACT

Since the Great Oxidation Event, about 2.4 billion years ago, the Earth is immersed in an oxidizing atmosphere. Thus, it has been proposed that excess oxygen, originally a waste product of photosynthetic cyanobacteria, induced oxidative stress and the production of reactive oxygen species (ROS), which have since acted as fundamental drivers of biologic evolution and eukaryogenesis. Indeed, throughout an organism's lifespan, ROS affect directly (as mutagens) or indirectly (as messengers and regulators) all structural and functional components of cells, and many aspects of cell biology. Whether left unchecked by protective antioxidant systems, excess ROS not only cause genomic mutations but also induce irreversible oxidative modification of proteins (protein oxidation and peroxidation), lipids and glycans (advanced lipoxidation and glycation end products), impairing their function and promoting disease or cell death. Conversely, low-level local ROS play an important role both as redox-signaling molecules in a wide spectrum of pathways involved in the maintenance of cellular homeostasis (MAPK/ERK, PTK/PTP, PI3K-AKT-mTOR), and regulating key transcription factors (NFκB/IκB, Nrf2/KEAP1, AP-1, p53, HIF-1). Consequently, ROS can shape a variety of cellular functions, including proliferation, differentiation, migration and apoptosis. In this review, we will give a brief overview of the relevance of ROS in both physiological and pathological processes, particularly inflammation and aging. In-depth knowledge of the molecular mechanisms of ROS actuation and their influence under steady-state and stressful conditions will pave the way for the development of novel therapeutic interventions. This will mitigate the harmful outcomes of ROS in the onset and progression of a variety of chronic inflammatory and age-related diseases.

7.
Int J Mol Sci ; 21(23)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297418

ABSTRACT

As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.


Subject(s)
Homeostasis , Oxidative Stress , Respiratory Mucosa/metabolism , Respiratory Tract Diseases/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Humans , Respiratory Mucosa/pathology , Respiratory Tract Diseases/drug therapy , Respiratory Tract Diseases/pathology
8.
Kidney Int ; 97(3): 551-566, 2020 03.
Article in English | MEDLINE | ID: mdl-31982108

ABSTRACT

Lupus nephritis is a chronic autoimmune-inflammatory condition that can lead to end-stage kidney disease. Presently available immunosuppressive treatments for lupus nephritis are suboptimal and can induce significant side effects. Recently, we characterized a novel immunomodulatory activity of the minor isoform of the classical pathway complement inhibitor, C4BP(ß-). We show here that C4BP(ß-) treatment prevented the development of proteinuria and albuminuria, decreased significantly the formation of anti-dsDNA antibodies and, locally, mitigated renal glomerular IgG and C3 deposition and generation of apoptotic cells. There was a consequent histological improvement and increased survival in lupus-prone mice. The therapeutic efficacy of C4BP(ß-) was analogous to that of the broad-acting immunosuppressant cyclophosphamide. Remarkably, a comparative transcriptional profiling analysis revealed that the kidney gene expression signature resulting from C4BP(ß-) treatment turned out to be 10 times smaller than that induced by cyclophosphamide treatment. C4BP(ß-) immunomodulation induced significant downregulation of transcripts relevant to lupus nephritis indicating immunopathogenic cell infiltration, including activated T cells (Lat), B cells (Cd19, Ms4a1, Tnfrsf13c), inflammatory phagocytes (Irf7) and neutrophils (Prtn3, S100a8, S100a9). Furthermore, cytokine profiling and immunohistochemistry confirmed that C4BP(ß-), through systemic and local CXCL13 downregulation, was able to prevent ectopic lymphoid structures neogenesis in aged mice with lupus nephritis. Thus, due to its anti-inflammatory and immunomodulatory activities and high specificity, C4BP(ß-) could be considered for further clinical development in patients with systemic lupus erythematosus.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , Histocompatibility Antigens , Humans , Immunomodulation , Kidney , Lupus Nephritis/drug therapy , Lupus Nephritis/prevention & control , Mice , Proteinuria
9.
Semin Cell Dev Biol ; 85: 143-152, 2019 01.
Article in English | MEDLINE | ID: mdl-29155220

ABSTRACT

Complement and dendritic cells (DCs) share many functional features that drive the outcome of immune-inflammatory processes. Both have a sentinel function, acting as danger sensors specialized for a rapid, comprehensive and selective action against potential threats without damaging the healthy host cells. But while complement has been considered as a "master alarm" system poised for direct pathogen killing, DCs are regarded as "master regulators" or orchestrators of a vast range of effector immune cells for an effective immune response against threatening insults. The original definition of the complement system, coined to denote its auxiliary function to enhance or assist in the role of antibodies or phagocytes to clear microbes or damaged cells, envisaged an important crosstalk between the complement and the mononuclear phagocyte systems. More recent studies have shown that, depending on the microenvironmental conditions, several complement effectors are competent to influence the differentiation and/or function of different DC subsets toward immunogenicity or tolerance. In this review we will infer about the capability of complement activators and inhibitors to "condition" a tolerogenic and anti-inflammatory immune response by direct interaction with DC surface receptors, and about the implications of this knowledge to devise new complement-based therapeutic approaches for autoimmune pathologies.


Subject(s)
Complement System Proteins/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Animals , Humans
10.
J Neurosurg ; 131(1): 72-79, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30052155

ABSTRACT

OBJECTIVE: Carotid artery atherosclerosis is a major cause of ischemic stroke. However, reliable criteria to identify patients with high-risk carotid plaques beyond the severity of stenosis are still lacking. Circulating microRNAs (miRNAs) are being postulated as biomarkers for a variety of vascular immune-inflammatory diseases. The authors investigated whether cell-free circulating miR-638, highly expressed in vascular smooth muscle cells and implicated in proliferative vascular diseases, is associated with vulnerable atherosclerotic plaques in high-risk patients with advanced carotid artery stenosis undergoing carotid endarterectomy (CEA). METHODS: The authors conducted a prospective study in 22 consecutive symptomatic patients with high-grade carotid stenosis undergoing CEA and 36 age- and sex-matched patients without ischemic stroke history or carotid atherosclerosis (control group). In addition, they reviewed data from a historical group of 9 CEA patients who underwent long-term follow-up after revascularization. Total RNA was isolated from all serum samples, and relative miR-638 expression levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and compared among groups. A correlation analysis of serum miR-638 levels with vascular risk factors and treatments, and with plaque features, was performed. The ability of serum miR-638 to discriminate between the non-CEA control group and the different CEA groups was assessed by receiver operating characteristic evaluation. A logistic regression model was employed to examine the association between stratified CEA patients and serum miR-638 levels. RESULTS: Serum levels of miR-638 were significantly lower in symptomatic CEA patients (p = 0.009) and particularly in the subgroup of CEA patients who had experienced stroke (p = 0.0006) than in non-CEA controls. Discrimination of high-risk plaques was accurate (area under the curve [AUC] 0.66 for symptomatic CEA patients in general and 0.76 for those who had experienced stroke). When only patients with high cardiovascular risk were considered, the diagnostic value of serum miR-638 from symptomatic CEA patients and CEA patients who had experienced stroke improved (AUC 0.79 and 0.85). Moreover, serum miR-638 was negatively correlated with the occurrence of stroke, smoker status, presence of bilateral pathology, coronary artery disease, and cholesterol treatment; and with the high-risk fibroatheroma plaques extracted from CEA patients. Multivariate logistic regression analysis demonstrated that serum miR-638 was an independent predictor of plaque instability. Furthermore, serum miR-638 appeared to attain good discrimination for atherosclerotic stenosis in CEA patients based on analysis of blood samples obtained in the historical group before and 5 years after intervention (p = 0.04) (AUC = 0.79). CONCLUSIONS: According to this preliminary proof-of-concept study, serum miR-638 might constitute a promising noninvasive biomarker associated with plaque vulnerability and ischemic stroke, particularly in individuals with elevated cardiovascular risk.

11.
Front Immunol ; 9: 892, 2018.
Article in English | MEDLINE | ID: mdl-29760704

ABSTRACT

The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.


Subject(s)
Acute-Phase Proteins/immunology , Dendritic Cells/immunology , Immune Tolerance/immunology , Animals , Humans
12.
J Immunol ; 196(10): 4274-90, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27076676

ABSTRACT

The activation of the complement system is a key initiating step in the protective innate immune-inflammatory response against injury, although it may also cause harm if left unchecked. The structurally related soluble complement inhibitors C4b-binding protein (C4BP) and factor H (FH) exert a tight regulation of the classical/lectin and alternative pathways of complement activation, respectively, attenuating the activity of the C3/C5 convertases and, consequently, avoiding serious damage to host tissues. We recently reported that the acute-phase C4BP isoform C4BP lacking the ß-chain plays a pivotal role in the modulation of the adaptive immune responses. In this study, we demonstrate that FH acts in the early stages of monocyte to dendritic cell (DC) differentiation and is able to promote a distinctive tolerogenic and anti-inflammatory profile on monocyte-derived DCs (MoDCs) challenged by a proinflammatory stimulus. Accordingly, FH-treated and LPS-matured MoDCs are characterized by altered cytoarchitecture, resembling immature MoDCs, lower expression of the maturation marker CD83 and the costimulatory molecules CD40, CD80, and CD86, decreased production of key proinflammatory Th1-cytokines (IL-12, TNF-α, IFN-γ, IL-6, and IL-8), and preferential production of immunomodulatory mediators (IL-10 and TGF-ß). Moreover, FH-treated MoDCs show low Ag uptake and, when challenged with LPS, display reduced CCR7 expression and chemotactic migration, impaired CD4(+) T cell alloproliferation, inhibition of IFN-γ secretion by the allostimulated T cells, and, conversely, induction of CD4(+)CD127(low/negative)CD25(high)Foxp3(+) regulatory T cells. Thus, this novel noncanonical role of FH as an immunological brake able to directly affect the function of MoDCs in an inflammatory environment may exhibit therapeutic potential in hypersensitivity, transplantation, and autoimmunity.


Subject(s)
Dendritic Cells/immunology , Immune Tolerance , Inflammation/immunology , Monocytes/immunology , Antigens, CD/metabolism , Cell Differentiation , Cells, Cultured , Chemotaxis , Complement C4b-Binding Protein/immunology , Complement Factor H/immunology , Cytokines/immunology , Endocytosis , Humans , T-Lymphocytes, Regulatory/immunology
13.
Genome Biol ; 17: 4, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26758199

ABSTRACT

BACKGROUND: The role of cytokines in establishing specific transcriptional programmes in innate immune cells has long been recognized. However, little is known about how these extracellular factors instruct innate immune cell epigenomes to engage specific differentiation states. Human monocytes differentiate under inflammatory conditions into effector cells with non-redundant functions, such as dendritic cells and macrophages. In this context, interleukin 4 (IL-4) and granulocyte macrophage colony-stimulating factor (GM-CSF) drive dendritic cell differentiation, whereas GM-CSF alone leads to macrophage differentiation. RESULTS: Here, we investigate the role of IL-4 in directing functionally relevant dendritic-cell-specific DNA methylation changes. A comparison of DNA methylome dynamics during differentiation from human monocytes to dendritic cells and macrophages identified gene sets undergoing dendritic-cell-specific or macrophage-specific demethylation. Demethylation is TET2-dependent and is essential for acquiring proper dendritic cell and macrophage identity. Most importantly, activation of the JAK3-STAT6 pathway, downstream of IL-4, is required for the acquisition of the dendritic-cell-specific demethylation and expression signature, following STAT6 binding. A constitutively activated form of STAT6 is able to bypass IL-4 upstream signalling and instruct dendritic-cell-specific functional DNA methylation changes. CONCLUSIONS: Our study is the first description of a cytokine-mediated sequence of events leading to direct gene-specific demethylation in innate immune cell differentiation.


Subject(s)
Cell Differentiation/genetics , DNA Methylation/genetics , Interleukin-4/genetics , STAT6 Transcription Factor/genetics , DNA-Binding Proteins/genetics , Dendritic Cells/cytology , Dioxygenases , Gene Expression Regulation , Humans , Immunity, Innate/genetics , Interleukin-4/metabolism , Macrophage Colony-Stimulating Factor/genetics , Macrophage Colony-Stimulating Factor/metabolism , Monocytes/cytology , Monocytes/metabolism , Proto-Oncogene Proteins/genetics , STAT6 Transcription Factor/metabolism
14.
Kidney Int ; 88(3): 538-49, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25993320

ABSTRACT

Ischemia-reperfusion occurs in a great many clinical settings and contributes to organ failure or dysfunction. CD154-CD40 signaling in leukocyte-endothelial cell interactions or T-cell activation facilitates tissue inflammation and injury. Here we tested a siRNA anti-CD40 in rodent warm and cold ischemia models to check the therapeutic efficacy and anti-inflammatory outcome of in vivo gene silencing. In the warm ischemia model different doses were used, resulting in clear renal function improvement and a structural renoprotective effect. Renal ischemia activated the CD40 gene and protein expression, which was inhibited by intravenous siRNA administration. CD40 gene silencing improved renal inflammatory status, as seen by the reduction of CD68 and CD3 T-cell infiltrates, attenuated pro-inflammatory, and enhanced anti-inflammatory mediators. Furthermore, siRNA administration decreased a spleen pro-inflammatory monocyte subset and reduced TNFα secretion by splenic T cells. In the cold ischemia model with syngeneic and allogeneic renal transplantation, the most effective dose induced similar functional and structural renoprotective effects. Our data show the efficacy of our siRNA in modulating both the local and the systemic inflammatory milieu after an ischemic insult. Thus, CD40 silencing could emerge as a novel therapeutic strategy in solid organ transplantation.


Subject(s)
CD40 Antigens/metabolism , CD40 Ligand/metabolism , Kidney/metabolism , Lymphocyte Activation , Reperfusion Injury/metabolism , T-Lymphocytes/metabolism , Animals , CD40 Antigens/genetics , CD40 Antigens/immunology , CD40 Ligand/immunology , Cold Ischemia , Disease Models, Animal , Inflammation Mediators/metabolism , Kidney/immunology , Kidney/pathology , Kidney Transplantation , Male , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNAi Therapeutics , Rats, Inbred Lew , Rats, Wistar , Reperfusion Injury/genetics , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Signal Transduction , Spleen/immunology , Spleen/metabolism , T-Lymphocytes/immunology , Time Factors , Tumor Necrosis Factor-alpha/metabolism , Warm Ischemia
15.
Sci Rep ; 4: 4882, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24811064

ABSTRACT

To assess the usefulness of circulating microRNAs (miRNAs) as non-invasive molecular biomarkers for early prediction of preeclampsia, a differential miRNA profiling analysis was performed in first-trimester pooled sera from 31 early preeclampsia patients, requiring delivery before 34 weeks of gestation, and 44 uncomplicated pregnancies using microfluidic arrays. Among a total of 754 miRNAs analyzed, the presence of 63 miRNAs (8%) was consistently documented in the sera from preeclampsia and control samples. Nevertheless, only 15 amplified miRNAs (2%) seemed to be differentially, although modestly, represented (fold change range: 0.4-1.4). After stem loop RT-qPCR from individual samples, the statistical analysis confirmed that none of the most consistent and differentially represented miRNAs (3 overrepresented and 4 underrepresented) were differentially abundant in serum from preeclamptic pregnancies compared with serum from normal pregnancies. Therefore, maternal serum miRNA assessment at first-trimester of pregnancy does not appear to have any predictive value for early preeclampsia.


Subject(s)
Biomarkers/blood , MicroRNAs/blood , Pre-Eclampsia/blood , Pre-Eclampsia/diagnosis , Pregnancy Trimester, First/blood , Adult , Case-Control Studies , Female , Humans , Pregnancy
16.
Stem Cells Dev ; 23(19): 2352-63, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-24798370

ABSTRACT

Occupational asthma (OA) is characterized by allergic airway inflammation and hyperresponsiveness, leading to progressive airway remodeling and a concomitant decline in lung function. The management of OA remains suboptimal in clinical practice. Thus, establishing effective therapies might overcome the natural history of the disease. We evaluated the ability of human adipose-tissue-derived mesenchymal stem cells (hASCs), either unmodified or engineered to secrete the IL-33 decoy receptor sST2, to attenuate the inflammatory and respiratory symptoms in a previously validated mouse model of OA to ammonium persulfate (AP). Twenty-four hours after a dermal AP sensitization and intranasal challenge regimen, the animals received intravenously 1 × 10(6) cells (either hASCs or hASCs overexpressing sST2) or saline and were analyzed at 1, 3, and 6 days after treatment. The infused hASCs induced an anti-inflammatory and restorative program upon reaching the AP-injured, asthmatic lungs, leading to early reduction of neutrophilic inflammation and total IgE production, preserved alveolar architecture with nearly absent lymphoplasmacytic infiltrates, negligible smooth muscle hyperplasia/hypertrophy in the peribronchiolar areas, and baseline airway hyperreactivity (AHR) to methacholine. Local sST2 overexpression barely increased the substantial efficacy displayed by unmodified hASCs. Thus, hASCs may represent a viable multiaction therapeutic capable to adequately respond to the AP-injured lung environment by resolving inflammation, tissue remodeling, and bronchial hyperresponsiveness typical of OA.


Subject(s)
Asthma, Occupational/pathology , Bronchial Hyperreactivity/pathology , Mesenchymal Stem Cells/cytology , Animals , Asthma, Occupational/immunology , Asthma, Occupational/metabolism , Disease Models, Animal , Humans , Inflammation/immunology , Inflammation/pathology , Male , Mice, Inbred BALB C
17.
PLoS One ; 8(6): e65068, 2013.
Article in English | MEDLINE | ID: mdl-23799000

ABSTRACT

Lupus nephritis (LN) is an autoimmune disorder in which co-stimulatory signals have been involved. Here we tested a cholesterol-conjugated-anti-CD40-siRNA in dendritic cells (DC) in vitro and in a model of LPS to check its potency and tissue distribution. Then, we report the effects of Chol-siRNA in an experimental model of mice with established lupus nephritis. Our in vitro studies in DC show a 100% intracellular delivery of Chol-siRNA, with a significant reduction in CD40 after LPS stimuli. In vivo in ICR mice, the CD40-mRNA suppressive effects of our Chol-siRNA on renal tissue were remarkably sustained over a 5 days after a single preliminary dose of Chol-siRNA. The intra-peritoneal administration of Chol-siRNA to NZB/WF1 mice resulted in a reduction of anti-DNA antibody titers, and histopathological renal scores as compared to untreated animals. The higher dose of Chol-siRNA prevented the progression of proteinuria as effectively as cyclophosphamide, whereas the lower dose was as effective as CTLA4. Chol-siRNA markedly reduced insterstitial CD3+ and plasma cell infiltrates as well as glomerular deposits of IgG and C3. Circulating soluble CD40 and activated splenic lymphocyte subsets were also strikingly reduced by Chol-siRNA. Our data show the potency of our compound for the therapeutic use of anti-CD40-siRNA in human LN and other autoimmune disorders.


Subject(s)
CD40 Antigens/genetics , Lupus Nephritis/therapy , RNA Interference , RNA, Small Interfering/genetics , Albuminuria/immunology , Albuminuria/metabolism , Albuminuria/therapy , Animals , Antibodies, Antinuclear/blood , CD40 Antigens/metabolism , Cell Survival , Cells, Cultured , Complement C3/metabolism , Cytokines/blood , Dendritic Cells/metabolism , Disease Progression , Gene Expression , Gene Knockdown Techniques , Humans , Immunoglobulin G/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Lipopolysaccharides/pharmacology , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Male , Mice , Mice, Inbred ICR , Plasma Cells/immunology , Spleen/immunology , Spleen/metabolism , Transfection
18.
Transplantation ; 96(3): 234-8, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23759879

ABSTRACT

The Fourth Expert Meeting of the Mesenchymal Stem Cells in Solid Organ Transplantation (MiSOT) Consortium took place in Barcelona on October 19 and 20, 2012. This meeting focused on the translation of preclinical data into early clinical settings. This position paper highlights the main topics explored on the safety and efficacy of mesenchymal stem cells as a therapeutic agent in solid organ transplantation and emphasizes the issues (proper timing, concomitant immunossupression, source and immunogenicity of mesenchymal stem cells, and oncogenicity) that have been addressed and will be followed up by the MiSOT Consortium in future studies.


Subject(s)
Mesenchymal Stem Cell Transplantation , Clinical Trials as Topic , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/legislation & jurisprudence
19.
Am J Respir Cell Mol Biol ; 49(4): 552-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23656573

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by pulmonary edema attributable to alveolar epithelial-interstitial-endothelial injury, associated with profound inflammation and respiratory dysfunction. The IL-33/IL-1 receptor-like-1 (ST2) axis plays a key role in the development of immune-inflammatory responses in the lung. Cell-based therapy has been recently proposed as an effective alternative for the treatment of ALI and ARDS. Here, we engineered human adipose tissue-derived mesenchymal stem cells (hASCs) overexpressing soluble IL-1 receptor-like-1 (sST2), a decoy receptor for IL-33, in order to enhance their immunoregulatory and anti-inflammatory properties when applied in a murine ALI model. We administered both hASCs and hASC-sST2 systemically at 6 hours after intranasal LPS instillation, when pathological changes had already occurred. Bioluminescence imaging, immunohistochemistry, and focused transcriptional profiling confirmed the increased presence of hASCs in the injured lungs and the activation of an immunoregulatory program (CXCR-4, tumor necrosis factor-stimulated gene 6 protein, and indoleamine 2,3-dioxygenase up-regulation) in these cells, 48 hours after endotoxin challenge. A comparative evaluation of hASCs and the actions of hASC-sST2 revealed that local sST2 overproduction by hASC-sST2 further prevented IL-33, Toll-like receptor-4, IL-1ß, and IFN-γ induction, but increased IL-10 expression in the injured lungs. This synergy caused a substantial decrease in lung airspace inflammation and vascular leakage, characterized by significant reductions in protein content, differential neutrophil counts, and proinflammatory cytokine (TNF-α, IL-6, and macrophage inflammatory protein 2) concentrations in bronchoalveolar lavage fluid. In addition, hASC-sST2-treated ALI lungs showed preserved alveolar architecture, an absence of apoptosis, and minimal inflammatory cell infiltration. These results suggest that hASCs genetically engineered to produce sST2 could become a promising therapeutic strategy for ALI/ARDS management.


Subject(s)
Acute Lung Injury/metabolism , Interleukins/antagonists & inhibitors , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Receptors, Somatostatin/biosynthesis , Acute Lung Injury/genetics , Acute Lung Injury/surgery , Animals , Bronchoalveolar Lavage Fluid , Endotoxins , Female , HEK293 Cells , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-33 , Interleukins/genetics , Interleukins/metabolism , Lipopolysaccharides/pharmacology , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Receptors, Somatostatin/genetics , Toll-Like Receptor 4/chemistry , Toll-Like Receptor 4/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
20.
J Immunol ; 190(6): 2857-72, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23390292

ABSTRACT

The classical pathway complement regulator C4b-binding protein (C4BP) is composed of two polypeptides (α- and ß-chains), which form three plasma oligomers with different subunit compositions (α7ß1, α7ß0, and α6ß1). We show in this article that the C4BP α7ß0 isoform (hereafter called C4BP[ß(-)] [C4BP lacking the ß-chain]), overexpressed under acute-phase conditions, induces a semimature, tolerogenic state on human monocyte-derived dendritic cells (DCs) activated by a proinflammatory stimulus. C4BP isoforms containing ß-chain (α7ß1 and α6ß1; C4BP[ß(+)]) neither interfered with the normal maturation of DCs nor competed with C4BP(ß(-)) activity on these cells. Immature DCs (iDCs) treated with C4BP(ß(-)) retained high endocytic activity, but, upon LPS treatment, they did not upregulate surface expression of CD83, CD80, and CD86. Transcriptional profiling of these semimature DCs revealed that treatment with C4BP(ß(-)) prevented the induction of IDO and BIC-1, whereas TGF-ß1 expression was maintained to the level of iDCs. C4BP(ß(-))-treated DCs were also unable to release proinflammatory Th1 cytokines (IL-12, TNF-α, IFN-γ, IL-6, IL-8) and, conversely, increased IL-10 secretion. They prevented surface CCR7 overexpression and, accordingly, displayed reduced chemotaxis, being morphologically indistinguishable from iDCs. Moreover, C4BP(ß(-))-treated DCs failed to enhance allogeneic T cell proliferation, impairing IFN-γ production in these cells and, conversely, promoting CD4(+)CD127(low/neg)CD25(high)Foxp3(+) T cells. Deletion mutant analysis revealed that the complement control protein-6 domain of the α-chain is necessary for the tolerogenic activity of C4BP(ß(-)). Our data demonstrate a novel anti-inflammatory and immunomodulatory function of the complement regulator C4BP, suggesting a relevant role of the acute-phase C4BP(ß(-)) isoform in a number of pathophysiological conditions and potential applications in autoimmunity and transplantation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Cell Differentiation/immunology , Complement C4b-Binding Protein/physiology , Dendritic Cells/chemistry , Dendritic Cells/immunology , Histocompatibility Antigens/physiology , Cell Differentiation/genetics , Complement C4b-Binding Protein/chemistry , Complement C4b-Binding Protein/genetics , Dendritic Cells/pathology , HEK293 Cells , Histocompatibility Antigens/chemistry , Histocompatibility Antigens/genetics , Humans , Immune Tolerance/genetics , Inflammation/genetics , Inflammation/immunology , Inflammation/prevention & control , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...