Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35636129

ABSTRACT

The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules.


Subject(s)
Antiprotozoal Agents , Biological Products , Parasites , Animals , Antiprotozoal Agents/chemistry , Biological Products/pharmacology , Ecosystem , Giardia , Humans
2.
Drug Dev Res ; 80(6): 800-806, 2019 09.
Article in English | MEDLINE | ID: mdl-31243798

ABSTRACT

Gymnosperma glutinosum (Spreng) Less (Asteraceae) is a shrub used in traditional medicine for the treatment of inflammatory and renal diseases. The ent-dihydrotucumanoic acid (DTA) is a diterpene obtained from G. glutinosum. This study evaluated the antioxidant, genotoxic, and diuretic properties of DTA, as well as its in vitro and in vivo anti-inflammatory actions. The antioxidant actions of DTA were assessed with the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assays, the genotoxic action was assessed with the comet assay, and the diuretic effects of DTA were assessed using metabolic cages. The anti-inflammatory actions were evaluated using primary murine peritoneal macrophages stimulated with LPS and the λ-carrageenan-induced hind paw edema test. DTA lacked antioxidant (IC50 > 25,000 µg/mL) activity in the ABTS, FRAP, and DPPH assays. DTA at 500-1,000 µg/mL showed moderate genotoxicity. In LPS-stimulated macrophages, DTA showed IC50 values of 74.85 µg/mL (TNF-α) and 58.12 µg/mL (NO), whereas the maximum inhibition of IL-6 (24%) and IL-1ß (36%) was recorded at 200 µg/mL. DTA induced in vivo anti-inflammatory effects with ED50 = 124.3 mg/kg. The in vitro anti-inflammatory activity of DTA seems to be associated with the decrease in the release of TNF-α and NO. DTA promoted the excretion of urine (ED50 = 86.9 mg/kg), Na+ (ED50 = 66.7 mg/kg), and K+ (ED50 = 8.6 mg/kg). The coadministration of DTA with L-NAME decreased the urinary excretion shown by DTA alone. Therefore, the diuretic activity is probably associated with the participation of nitric oxide synthase. In conclusion, DTA exerted anti-inflammatory and diuretic effects, but lacked antioxidant effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Diterpenes/pharmacology , Diuretics/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Antioxidants/chemistry , Antioxidants/therapeutic use , Antioxidants/toxicity , Asteraceae , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Carrageenan , Comet Assay , Cytokines/metabolism , Diterpenes/chemistry , Diterpenes/therapeutic use , Diterpenes/toxicity , Diuretics/chemistry , Diuretics/therapeutic use , Diuretics/toxicity , Edema/chemically induced , Edema/drug therapy , Humans , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred BALB C , Nitric Oxide/metabolism , Picrates/chemistry , Sulfonic Acids/chemistry
3.
Appl Biochem Biotechnol ; 186(3): 597-612, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29691792

ABSTRACT

Inflammation is considered to be a major risk factor for the pathogenesis of chronic non-communicable diseases. Macrophages are important immune cells, which regulate inflammation and host defense by secretion of proinflammatory mediators. Obtaining biopeptides by enzymatic hydrolysis adds value to proteins of vegetative origin, such as Mucuna pruriens L. The present study evaluated the effect of enzymatic digestion of protein derivatives obtained from M. pruriens L. on the production of proinflammatory mediators by BALB/c mouse macrophages. Five different molecular weight peptide fractions were obtained (F > 10, 5-10, 3-5, 1-3, and < 1 kDa, respectively). At 300 µg/mL, F5-10 kDa inhibited 50.26 and 61.00% NO and H2O2 production, respectively. Moreover, F5-10 kDa reduced the IL-6 and TNFα levels to 60.25 and 69.54%, respectively. After enzymatic digestive simulation, F5-10 kDa decreased the inflammatory mediators.


Subject(s)
Enzymes/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Mucuna/chemistry , Plant Proteins/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Chlorocebus aethiops , Hydrolysis , Interleukin-6/biosynthesis , Male , Mice, Inbred BALB C , Molecular Weight , Peptides/chemistry , Peptides/metabolism , Plant Proteins/chemistry , Proteolysis , Transforming Growth Factor alpha/biosynthesis , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL