Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37050221

ABSTRACT

Electrically-conductive epoxy nanocomposites (NCs) with improved mechanical and adhesive properties were achieved through the combined addition of poly(ε-caprolactone) (PCL) and carbon nanotubes (CNTs). Three different ionic liquids (ILs) were used as dual role agents, i.e., as both curing and dispersing agents. Regardless of the IL used, the epoxy/PCL matrix of the NCs showed a single-phase behaviour and similar glass transition (Tg) and crosslinking density (νe) values to the unfilled epoxy/PCL/IL systems. Although the CNTs were more poorly dispersed in the epoxy/PCL/CNT/IL NCs than in the reference epoxy/CNT/IL NCs, which led to slightly lower electrical conductivity values, the epoxy/PCL/CNT/IL NCs were still semiconductive. Their low-strain mechanical properties (i.e., flexural modulus and flexural strength) were similar or better than those of the reference epoxy/IL systems and their high-strain mechanical properties (i.e., deformation at break and impact strength) were significantly better. In addition, the positive effects of the PCL and the CNTs on the adhesive properties of the epoxy/IL system were combined. The substitution of ILs for traditional amine-based curing agents and biodegradable PCL for part of the epoxy resin represents an important advance on the road towards greater sustainability.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36839093

ABSTRACT

Good dispersion of carbon nanotubes (CNTs) together with effective curing were obtained in epoxy/CNT nanocomposites (NCs) using three different ionic liquids (ILs). Compared to conventional amine-cured epoxy systems, lower electrical percolation thresholds were obtained in some of the IL-based epoxy systems. For example, the percolation threshold of the trihexyltetradecylphosphonium dicyanamide (IL-P-DCA)-based system was 0.001 wt.%. The addition of CNTs was not found to have any significant effect on the thermal or low-strain mechanical properties of the nanocomposites, but it did improve their adhesive properties considerably compared to the unfilled systems. This study demonstrates that ILs can be used to successfully replace traditional amine-based curing agents for the production of electrically conductive epoxy/CNT NCs and adhesives, as a similar or better balance of properties was achieved. This represents a step towards greater sustainability given that the vapor pressure of ILs is low, and the amount needed to effectively cure epoxy resins is significantly lower than any of their counterparts.

3.
Polymers (Basel) ; 14(22)2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36433160

ABSTRACT

Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) is a bio-based polyester with the potential to replace some common polymers of fossil origin. However, PHBH presents serious limitations, such as low stiffness, tendency to undergo crystallization over long time periods and low resistance to thermal degradation during processing. In this work, we studied the use of alumina nanowires to generate PHBH-alumina nanocomposites, modifying the properties of PHBH to improve its usability. Solvent casting and melt blending were used to produce the nanocomposites. Then, their physicochemical properties and aquatic toxicity were measured. Finally, LCA was used to evaluate and compare the environmental impacts of several scenarios relevant to the processing and end of life (EoL) conditions of PHBHs. It was observed that, at low concentrations (3 wt.%), the alumina nanowires have a small positive impact on the stiffness and thermal degradation for the samples. However, for higher concentrations, the observed effects differed for each of the applied processing techniques (solvent casting or melt blending). The toxicity measurements showed that PHBH alone and in combination with alumina nanowires (10 wt.%) did not produce any impact on the survival of brine shrimp larvae after 24 and 48 h of exposure. The 18 impact categories evaluated by LCA allowed defining the most environmentally friendly conditions for the processing and EoL of PHBHs, and comparing the PHBH-related impacts to those of some of the most common fossil-based plastics. It was concluded that the preferable processing technique for PHBH is melt blending and that PHBH is unquestionably more environmentally friendly than every other analyzed plastic.

4.
Polymers (Basel) ; 14(13)2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35808720

ABSTRACT

In this work, ionic liquid (IL)-cured epoxy resins were modified by adding poly(ε-caprolactone) (PCL). Three different ILs were used in order to study how (a) the chemical structure of the ILs and (b) the PCL content affect the phase behaviour, microstructure, mechanical and adhesive properties. Regardless of the IL used or the PCL content, the obtained materials showed a single phase. The addition of PCL to the epoxy resin resulted in plasticizing of the network blends, lower glass transition temperatures (Tg), and crosslinking densities (νe). Low PCL contents did not have a significant impact on the mechanical properties. However, the adhesive properties improved significantly at low PCL contents. Higher PCL contents led to a significant increase in toughness, especially in the case of the imidazolium-based IL. The balance achieved between the mechanical and adhesive properties of these IL-cured epoxy/PCL blends constitutes an important step towards sustainability. This is because a biodegradable polymer (PCL) was used to substitute part of the epoxy resin, and the ILs-which are non-volatile and cure effectively at much lower contents-were used instead of conventional curing agents. Given the wide use of this kind of materials in the adhesive industry, the practical significance of these results must be emphasised.

5.
Polymers (Basel) ; 13(19)2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34641235

ABSTRACT

Multi-walled carbon nanotubes (CNTs) were added to provide electrical conductivity to bio-based polymer blends with improved toughness (based on commercially available Pebax thermoplastic elastomers and bio-based polyamide 4,10). A preliminary study including three different Pebax grades was carried out to select the grade and the composition that would best improve the impact properties of PA410. Thus, tough multiphasic PA/Pebax/CNT nanocomposites (NCs) with enhanced electrical conductivity were obtained. The CNTs were added either: (1) in the form of pristine nanotubes or (2) in the form of a PA6-based masterbatch. Hence, PA410/Pebax/CNT ternary NCs and PA410/PA6/Pebax/CNT quaternary NCs were obtained, respectively, up to a CNT content of 1 wt%. The ternary and quaternary NCs both showed similar mechanical and electrical properties. The electrical percolation threshold decreased with respect to previously studied corresponding NCs without Pebax, i.e., PA410/CNT and PA410/PA6/CNT, due to the partial volume exclusion effect of Pebax over the CNTs that were dispersed mainly in the PA matrix; materials with percolation concentrations as low as 0.38 wt% were obtained. With respect to mechanical properties, contrary to the NCs without Pebax, all the PA/Pebax/CNT NCs showed a ductile behavior and impact strength values that were from three to five-fold higher than that of the pure PA410.

6.
Polymers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201892

ABSTRACT

There is need for developing novel conductive polymers for Digital Light Processing (DLP) 3D printing. In this work, photorheology, in combination with Jacobs working curves, efficaciously predict the printability of polyaniline (PANI)/acrylate formulations with different contents of PANI and photoinitiator. The adjustment of the layer thickness according to cure depth values (Cd) allows printing of most formulations, except those with the highest gel point times determined by photorheology. In the working conditions, the maximum amount of PANI embedded within the resin was ≃3 wt% with a conductivity of 10-5 S cm-1, three orders of magnitude higher than the pure resin. Higher PANI loadings hinder printing quality without improving electrical conductivity. The optimal photoinitiator concentration was found between 6 and 7 wt%. The mechanical properties of the acrylic matrix are maintained in the composites, confirming the viability of these simple, low-cost, conductive composites for applications in flexible electronic devices.

7.
Polymers (Basel) ; 14(1)2021 Dec 23.
Article in English | MEDLINE | ID: mdl-35012075

ABSTRACT

Lactide-valerolactone copolymers have potential application in the packaging sector. Different copolymers were synthesized, and the kinetics of the copolymerization reactions and the microstructure of the copolymers were analysed. Lactide showed higher reactivity than valerolactone which leads to composition drift through the reaction. Thermal, mechanical and barrier properties of the selected copolymers were studied. Overall, the incorporation of valerolactone results in copolymers with higher ductility than poly(lactide) with intermediate water and oxygen permeability which makes these materials appropriate candidates for use in the packaging sector.

8.
Polymers (Basel) ; 11(12)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835758

ABSTRACT

Bio-based polymeric nanocomposites (NCs) with enhanced electrical conductivity and rigidity were obtained by adding multi-walled carbon nanotubes (CNTs) to a commercial bio-based polyamide 4,10 (PA410). Two different types of commercial CNTs (Cheap Tubes and Nanocyl NC7000TM) and two different preparation methods (using CNTs in powder form and a PA6-based masterbatch, respectively) were used to obtain melt-mixed PA410/CNT NCs. The effect of the preparation method as well as the degree of dispersion and aspect ratio of the CNTs on the electrical and mechanical properties of the processed NCs was studied. Superior electrical and mechanical behavior was observed in the Nanocyl CNTs-based NCs due to the enhanced dispersion and higher aspect ratio of the nanotubes. A much more significant reduction in aspect ratio was observed in the Cheap Tubes CNTs than in the Nanocyl CNTs. This was attributed to the fact that the shear stress applied during melt processing reduced the length of the CNTs to similar lengths in all cases, which pointed to the diameter of the CNTs as the key factor determing the properties of the NCs. The PA6 in the ternary PA410/PA6/CNT system led to improved Young's modulus values because the reinforcing effect of CNTs was greater in PA6 than in PA410.

9.
Molecules ; 24(10)2019 May 14.
Article in English | MEDLINE | ID: mdl-31091678

ABSTRACT

A novel and environmentally-friendly procedure for the preparation of polymer inclusion membranes (PIMs) containing an ionic liquid is presented for the first time. Traditionally, PIMs are prepared by a solvent casting method with the use of harmful organic solvents. Here we report a new solvent-free procedure based on a thermal-compression technique which involve the melting of the components of the PIM and the application of a high pressure to the melted specimen to form a flat-sheet film. In our study, we have tested different polymers, such as two cellulose derivatives as well as two thermoplastic polymers, polyurethane (TPU) and poli ε-caprolactone (PCL). The ionic liquid (IL) trioctylmethylammonium chloride (Aliquat 336) has been used to produce PIMs with a fixed composition of 70% polymer-30% IL (w/w). Both TPU and PCL polymers provide successful membranes, which have been thoroughly characterized. PIMs based on the polymer PCL showed a high stability. To test whether the properties of the IL were affected by the preparation conditions, the extraction ability of Aliquat 336 was investigated for both PCL and TPU membranes in terms of Cr(VI) extraction. Satisfactory values (90% extraction) were obtained for both membranes tested, showing this novel procedure as a green alternative for the preparation of PIMs with ILs.


Subject(s)
Ionic Liquids/chemistry , Polymers/chemical synthesis , Caproates/chemical synthesis , Caproates/chemistry , Green Chemistry Technology , Lactones/chemical synthesis , Lactones/chemistry , Membranes, Artificial , Polymers/chemistry , Polyurethanes/chemical synthesis , Polyurethanes/chemistry , Quaternary Ammonium Compounds/chemistry
10.
Polymers (Basel) ; 11(3)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30960418

ABSTRACT

Biobased thermoplastic polyurethane (bTPU)/unmodified graphene (GR) nanocomposites (NCs) were obtained by melt-mixing in a lab-scaled conventional twin-screw extruder. Alternatively, GR was also modified with an ionic liquid (GR-IL) using a simple preparation method with the aim of improving the dispersion level. XRD diffractograms indicated a minor presence of well-ordered structures in both bTPU/GR and bTPU/GR-IL NCs, which also showed, as observed by TEM, nonuniform dispersion. Electrical conductivity measurements pointed to an improved dispersion level when GR was modified with the IL, because the bTPU/GR-IL NCs showed a significantly lower electrical percolation threshold (1.99 wt%) than the bTPU/GR NCs (3.21 wt%), as well as higher conductivity values. Young's modulus increased upon the addition of the GR (by 65% with 4 wt%), as did the yield strength, while the ductile nature of the bTPU matrix maintained in all the compositions, with elongation at break values above 200%. This positive effect on the mechanical properties caused by the addition of GR maintained or slightly increased when GR-IL was used, pointing to the success of this method of modifying the nanofiller to obtain bTPU/GR NCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...