Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446028

ABSTRACT

Huntington's disease (HD) is a disorder caused by an abnormal expansion of trinucleotide CAG repeats within the huntingtin (Htt) gene. Under normal conditions, the CREB Binding Protein interacts with CREB elements and acetylates Lysine 27 of Histone 3 to direct the expression of several genes. However, mutant Htt causes depletion of CBP, which in turn induces altered histone acetylation patterns and transcriptional deregulation. Here, we have studied a differential expression analysis and H3K27ac variation in 4- and 6-week-old R6/2 mice as a model of juvenile HD. The analysis of differential gene expression and acetylation levels were integrated into Gene Regulatory Networks revealing key regulators involved in the altered transcription cascade. Our results show changes in acetylation and gene expression levels that are related to impaired neuronal development, and key regulators clearly defined in 6-week-old mice are proposed to drive the downstream regulatory cascade in HD. Here, we describe the first approach to determine the relationship among epigenetic changes in the early stages of HD. We determined the existence of changes in pre-symptomatic stages of HD as a starting point for early onset indicators of the progression of this disease.


Subject(s)
Huntington Disease , Mice , Animals , Huntington Disease/genetics , Huntington Disease/metabolism , Histones/genetics , Histones/metabolism , Acetylation , Disease Models, Animal , Epigenesis, Genetic , Huntingtin Protein/genetics , Huntingtin Protein/metabolism
2.
J Org Chem ; 86(2): 2023-2027, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33373222

ABSTRACT

Cucurbit[7]uril (CB7) catalyzes the hydrolysis reaction of bis(4-nitrophenyl)carbonate (1) but inhibits that of bis(4-nitrophenyl)thiocarbonate (2). Two relevant CB7 effects are proposed, a base-catalyst mediated by the CB7 portal and an inhibitory role attributed to the lower interaction of the thiocarbonyl group with the solvent in the host cavity, respectively.

3.
Bioorg Med Chem Lett ; 28(17): 2890-2893, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30025902

ABSTRACT

This work describes the microwave assisted synthesis of twelve novel histamine H3 receptor ligands. They display pyrrolo[2,3-d]pyrimidine derivatives with rigidized aliphatic amines as warheads. The compounds were screened for H3R and H4R binding affinities in radioligand displacement assays and the most potent compounds were evaluated for H3R binding properties in vitro and in docking studies. The combination of a rigidized H3R warhead and the pyrrolo[2,3-d]pyrimidine scaffold resulted in selective activity at the H3 receptor with a pKi value of 6.90 for the most potent compound. A bipiperidine warhead displayed higher affinity than a piperazine or morpholine motif, while a naphthyl moiety in the arbitrary region increased affinity compared to a phenyl derivative. The compounds can be starting points for novel, simply synthesized histamine H3 receptor ligands.


Subject(s)
Histamine H3 Antagonists/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Receptors, Histamine H3/metabolism , Dose-Response Relationship, Drug , Histamine H3 Antagonists/chemical synthesis , Histamine H3 Antagonists/chemistry , Humans , Ligands , Microwaves , Molecular Docking Simulation , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrroles/chemical synthesis , Pyrroles/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...