Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Immunol ; 15: 1374499, 2024.
Article in English | MEDLINE | ID: mdl-38562931

ABSTRACT

Autoimmune Addison's disease (AAD) is a rare but life-threatening endocrine disorder caused by an autoimmune destruction of the adrenal cortex. A previous genome-wide association study (GWAS) has shown that common variants near immune-related genes, which mostly encode proteins participating in the immune response, affect the risk of developing this condition. However, little is known about the contribution of copy number variations (CNVs) to AAD susceptibility. We used the genome-wide genotyping data from Norwegian and Swedish individuals (1,182 cases and 3,810 controls) to investigate the putative role of CNVs in the AAD aetiology. Although the frequency of rare CNVs was similar between cases and controls, we observed that larger deletions (>1,000 kb) were more common among patients (OR = 4.23, 95% CI 1.85-9.66, p = 0.0002). Despite this, none of the large case-deletions were conclusively pathogenic, and the clinical presentation and an AAD-polygenic risk score were similar between cases with and without the large CNVs. Among deletions exclusive to individuals with AAD, we highlight two ultra-rare deletions in the genes LRBA and BCL2L11, which we speculate might have contributed to the polygenic risk in these carriers. In conclusion, rare CNVs do not appear to be a major cause of AAD but further studies are needed to ascertain the potential contribution of rare deletions to the polygenic load of AAD susceptibility.


Subject(s)
Addison Disease , Humans , Addison Disease/genetics , Addison Disease/pathology , DNA Copy Number Variations , Genome-Wide Association Study , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adaptor Proteins, Signal Transducing/genetics
2.
NPJ Vaccines ; 9(1): 42, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388530

ABSTRACT

Type I interferons act as gatekeepers against viral infection, and autoantibodies that neutralize these signaling molecules have been associated with COVID-19 severity and adverse reactions to the live-attenuated yellow fever vaccine. On this background, we sought to examine whether autoantibodies against type I interferons were associated with adverse events following COVID-19 vaccination. Our nationwide analysis suggests that type I interferon autoantibodies were not associated with adverse events after mRNA or viral-vector COVID-19 vaccines.

3.
Nature ; 623(7988): 803-813, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938781

ABSTRACT

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases.


Subject(s)
Autoantibodies , Genetic Predisposition to Disease , Interferon Type I , NF-kappa B , Humans , Autoantibodies/immunology , COVID-19/genetics , COVID-19/immunology , Gain of Function Mutation , Heterozygote , I-kappa B Proteins/deficiency , I-kappa B Proteins/genetics , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Loss of Function Mutation , NF-kappa B/deficiency , NF-kappa B/genetics , NF-kappa B p52 Subunit/deficiency , NF-kappa B p52 Subunit/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , Thymus Gland/abnormalities , Thymus Gland/immunology , Thymus Gland/pathology , Thyroid Epithelial Cells/metabolism , Thyroid Epithelial Cells/pathology , AIRE Protein , NF-kappaB-Inducing Kinase
4.
Eur J Endocrinol ; 189(2): 235-241, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37553728

ABSTRACT

OBJECTIVE: Autoantibodies against the adrenal enzyme 21-hydroxylase is a hallmark manifestation in autoimmune Addison's disease (AAD). Steroid 21-hydroxylase is encoded by CYP21A2, which is located in the human leucocyte antigen (HLA) region together with the highly similar pseudogene CYP21A1P. A high level of copy number variation is seen for the 2 genes, and therefore, we asked whether genetic variation of the CYP21 genes is associated with AAD. DESIGN: Case-control study on patients with AAD and healthy controls. METHODS: Using next-generation DNA sequencing, we estimated the copy number of CYP21A2 and CYP21A1P, together with HLA alleles, in 479 Swedish patients with AAD and autoantibodies against 21-hydroxylase and in 1393 healthy controls. RESULTS: With 95% of individuals carrying 2 functional 21-hydroxylase genes, no difference in CYP21A2 copy number was found when comparing patients and controls. In contrast, we discovered a lower copy number of the pseudogene CYP21A1P among AAD patients (P = 5 × 10-44), together with associations of additional nucleotide variants, in the CYP21 region. However, the strongest association was found for HLA-DQB1*02:01 (P = 9 × 10-63), which, in combination with the DRB1*04:04-DQB1*03:02 haplotype, imposed the greatest risk of AAD. CONCLUSIONS: We identified strong associations between copy number variants in the CYP21 region and risk of AAD, although these associations most likely are due to linkage disequilibrium with disease-associated HLA class II alleles.


Subject(s)
Addison Disease , Humans , Addison Disease/genetics , Steroid 21-Hydroxylase/genetics , DNA Copy Number Variations/genetics , Case-Control Studies , Sweden/epidemiology , Autoantibodies
5.
J Intern Med ; 294(1): 96-109, 2023 07.
Article in English | MEDLINE | ID: mdl-37151110

ABSTRACT

BACKGROUND: Autoimmune Addison's disease (AAD) is the most common cause of primary adrenal insufficiency (PAI). Despite its exceptionally high heritability, tools to estimate disease susceptibility in individual patients are lacking. We hypothesized that polygenic risk score (PRS) for AAD could help investigate PAI pathogenesis in pediatric patients. METHODS: We here constructed and evaluated a PRS for AAD in 1223 seropositive cases and 4097 controls. To test its clinical utility, we reevaluated 18 pediatric patients, whose whole genome we also sequenced. We next explored the individual PRS in more than 120 seronegative patients with idiopathic PAI. RESULTS: The genetic susceptibility to AAD-quantified using PRS-was on average 1.5 standard deviations (SD) higher in patients compared with healthy controls (p < 2e - 16), and 1.2 SD higher in the young patients compared with the old (p = 3e - 4). Using the novel PRS, we searched for pediatric patients with strikingly low AAD susceptibility and identified cases of monogenic PAI, previously misdiagnosed as AAD. By stratifying seronegative adult patients by autoimmune comorbidities and disease duration we could delineate subgroups of PRS suggesting various disease etiologies. CONCLUSIONS: The PRS performed well for case-control differentiation and susceptibility estimation in individual patients. Remarkably, a PRS for AAD holds promise as a means to detect disease etiologies other than autoimmunity.


Subject(s)
Addison Disease , Adult , Humans , Child , Autoantibodies , Autoimmunity , Risk Factors , Genetic Predisposition to Disease
6.
Eur J Endocrinol ; 188(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36721983

ABSTRACT

OBJECTIVE: Autoimmune Addison's disease (AAD) entails a chronic adrenal insufficiency and is associated with an increased risk of severe infections. It is, however, unknown how patients with AAD were affected by the coronavirus disease 2019 (COVID-19) pandemic of 2020-2021. This study was aimed at investigating the incidence of COVID-19 in patients with AAD in Sweden, the self-adjustment of medications during the disease, impact on social aspects, and treatment during hospitalization. Additionally, we investigated if there were any possible risk factors for infection and hospitalization. DESIGN AND METHODS: Questionnaires were sent out from April to October 2021 to 813 adult patients with AAD in the Swedish Addison Registry. The questionnaires included 55 questions inquiring about COVID-19 sickness, hospital care, medications, and comorbidities, focusing on the pre-vaccine phase. RESULTS: Among the 615 included patients with AAD, COVID-19 was reported in 17% of which 8.5% required hospital care. Glucocorticoid treatment in hospitalized patients varied. For outpatients, 85% increased their glucocorticoid dosage during sickness. Older age (P = .002) and hypertension (P = .014) were associated with an increased risk of hospital care, while younger age (P < .001) and less worry about infection (P = .030) were correlated with a higher risk of COVID-19. CONCLUSIONS: In the largest study to date examining AAD during the COVID-19 pandemic, we observed that although one-fifth of the cohort contracted COVID-19, few patients required hospital care. A majority of the patients applied general recommended sick rules despite reporting limited communication with healthcare during the pandemic.


Subject(s)
Addison Disease , COVID-19 , Self-Management , Adult , Humans , Addison Disease/epidemiology , Addison Disease/complications , Retrospective Studies , Sweden/epidemiology , Pandemics , Glucocorticoids/therapeutic use , COVID-19/epidemiology , COVID-19/complications
7.
J Allergy Clin Immunol ; 150(5): 1059-1073, 2022 11.
Article in English | MEDLINE | ID: mdl-36113674

ABSTRACT

BACKGROUND: Most severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected individuals are asymptomatic or only exhibit mild disease. In about 10% of cases, the infection leads to hypoxemic pneumonia, although it is much more rare in children. OBJECTIVE: We evaluated 31 young patients aged 0.5 to 19 years who had preexisting inborn errors of immunity (IEI) but lacked a molecular diagnosis and were later diagnosed with coronavirus disease 2019 (COVID-19) complications. METHODS: Genetic evaluation by whole-exome sequencing was performed in all patients. SARS-CoV-2-specific antibodies, autoantibodies against type I IFN (IFN-I), and inflammatory factors in plasma were measured. We also reviewed COVID-19 disease severity/outcome in reported IEI patients. RESULTS: A potential genetic cause of the IEI was identified in 28 patients (90.3%), including mutations that may affect IFN signaling, T- and B-cell function, the inflammasome, and the complement system. From tested patients 65.5% had detectable virus-specific antibodies, and 6.8% had autoantibodies neutralizing IFN-I. Five patients (16.1%) fulfilled the diagnostic criteria of multisystem inflammatory syndrome in children. Eleven patients (35.4%) died of COVID-19 complications. All together, at least 381 IEI children with COVID-19 have been reported in the literature to date. Although many patients with asymptomatic or mild disease may not have been reported, severe presentation of COVID-19 was observed in 23.6% of the published cases, and the mortality rate was 8.7%. CONCLUSIONS: Young patients with preexisting IEI may have higher mortality than children without IEI when infected with SARS-CoV-2. Elucidating the genetic basis of IEI patients with severe/critical COVID-19 may help to develop better strategies for prevention and treatment of severe COVID-19 disease and complications in pediatric patients.


Subject(s)
COVID-19 , Humans , Child , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral , Autoantibodies
8.
J Clin Immunol ; 42(3): 471-483, 2022 04.
Article in English | MEDLINE | ID: mdl-35091979

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. OBJECTIVES: To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. METHODS: Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. RESULTS: We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. CONCLUSIONS: Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/complications , Child, Preschool , Cytokines , Humans , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
9.
J Clin Immunol ; 42(1): 1-9, 2022 01.
Article in English | MEDLINE | ID: mdl-34686943

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) exhibits a wide spectrum of clinical manifestations, ranging from asymptomatic to critical conditions. Understanding the mechanism underlying life-threatening COVID-19 is instrumental for disease prevention and treatment in individuals with a high risk. OBJECTIVES: We aimed to identify the genetic cause for critical COVID-19 pneumonia in a patient with a preexisting inborn error of immunity (IEI). METHODS: Serum levels of specific antibodies against the virus and autoantibodies against type I interferons (IFNs) were measured. Whole exome sequencing was performed, and the impacts of candidate gene variants were investigated. We also evaluated 247 ataxia-telangiectasia (A-T) patients in the Iranian IEI registry. RESULTS: We report a 7-year-old Iranian boy with a preexisting hyper IgM syndrome who developed critical COVID-19 pneumonia. IgM only specific COVID-19 immune response was detected but no autoantibodies against type I IFN were observed. A homozygous deleterious mutation in the ATM gene was identified, which together with his antibody deficiency, radiosensitivity, and neurological signs, established a diagnosis of A-T. Among the 247 A-T patients evaluated, 36 had SARS-CoV-2 infection, but all had mild symptoms or were asymptomatic except the index patient. A hemizygous deleterious mutation in the TLR7 gene was subsequently identified in the patient. CONCLUSIONS: We report a unique IEI patient with combined ATM and TLR7 deficiencies. The two genetic defects underlie A-T and critical COVID-19 in this patient, respectively.


Subject(s)
Ataxia Telangiectasia/genetics , COVID-19/genetics , Pneumonia/genetics , Toll-Like Receptor 7/deficiency , Toll-Like Receptor 7/genetics , Child , Humans , Iran , Male
10.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911754

ABSTRACT

Autoantigen discovery is a critical challenge for the understanding and diagnosis of autoimmune diseases. While autoantibody markers in current clinical use have been identified through studies focused on individual disorders, we postulated that a reverse approach starting with a putative autoantigen to explore multiple disorders might hold promise. We here targeted the epidermal protein transglutaminase 1 (TGM1) as a member of a protein family prone to autoimmune attack. By screening sera from patients with various acquired skin disorders, we identified seropositive subjects with the blistering mucocutaneous disease paraneoplastic pemphigus. Validation in further subjects confirmed TGM1 autoantibodies as a 55% sensitive and 100% specific marker for paraneoplastic pemphigus. This gene-centric approach leverages the wealth of data available for human genes and may prove generally applicable for biomarker discovery in autoimmune diseases.


Subject(s)
Autoantigens/blood , Paraneoplastic Syndromes/immunology , Pemphigus/immunology , Transglutaminases/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Case-Control Studies , Child , Female , Humans , Male , Middle Aged , Paraneoplastic Syndromes/blood , Pemphigus/blood , Young Adult
12.
Nat Commun ; 12(1): 959, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574239

ABSTRACT

Autoimmune Addison's disease (AAD) is characterized by the autoimmune destruction of the adrenal cortex. Low prevalence and complex inheritance have long hindered successful genetic studies. We here report the first genome-wide association study on AAD, which identifies nine independent risk loci (P < 5 × 10-8). In addition to loci implicated in lymphocyte function and development shared with other autoimmune diseases such as HLA, BACH2, PTPN22 and CTLA4, we associate two protein-coding alterations in Autoimmune Regulator (AIRE) with AAD. The strongest, p.R471C (rs74203920, OR = 3.4 (2.7-4.3), P = 9.0 × 10-25) introduces an additional cysteine residue in the zinc-finger motif of the second PHD domain of the AIRE protein. This unbiased elucidation of the genetic contribution to development of AAD points to the importance of central immunological tolerance, and explains 35-41% of heritability (h2).


Subject(s)
Addison Disease/genetics , Genome-Wide Association Study , Basic-Leucine Zipper Transcription Factors/genetics , CTLA-4 Antigen/genetics , Female , Humans , Male , Models, Molecular , Protein Tyrosine Phosphatase, Non-Receptor Type 22/genetics , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...