Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 12(18): 4509-4520, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38647022

ABSTRACT

One of the key challenges in diagnosing thyroid cancer lies in the substantial percentage of indeterminate diagnoses of thyroid nodules that have undergone ultrasound-guided fine-needle aspiration (FNA) biopsy for cytological evaluation. This delays the definitive diagnosis and treatment plans. We recently demonstrated that hydroxyapatite microcalcifications (MCs) aspirated from thyroid nodules may aid nodule diagnosis based on their composition. In particular, Zn-enriched MCs have emerged as potential cancer biomarkers. However, a pertinent question remains: is the elevated Zn content within MCs a consequence of cancer, or do the Zn-enriched MCs encourage tumorigenesis? To address this, we treated the human thyroid cancer cell line MDA-T32 with synthetic MC analogs comprising hydroxyapatite crystals with varied pathologically relevant Zn fractions and assessed the cellular response. The MC analogs exhibited an irregular surface morphology similar to FNA MCs observed in cancerous thyroid nodules. These MC analogs displayed an inverse relationship between Zn fraction and crystallinity, as shown by X-ray diffractometry. The zeta potential of the non-Zn-bearing hydroxyapatite crystals was negative, which decreased once Zn was incorporated into the crystal. The MC analogs were not cytotoxic. The cellular response to exposure to these crystals was evaluated in terms of cell migration, proliferation, the tendency of the cells to form multicellular spheroids, and the expression of cancer markers. Our findings suggest that, if thyroid MCs play a role in promoting cancerous behavior in vivo, it is likely a result of the interplay of crystallinity with Zn and carbonate fractions in MCs.


Subject(s)
Calcinosis , Thyroid Neoplasms , Zinc , Humans , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Zinc/chemistry , Calcinosis/pathology , Calcinosis/metabolism , Carbonates/chemistry , Crystallization , Cell Proliferation/drug effects , Cell Line, Tumor , Durapatite/chemistry
2.
Eur Phys J E Soft Matter ; 46(9): 74, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653248

ABSTRACT

Targeting the cell nucleus remains a challenge for drug delivery. Here, we present a universal platform for the smart design of nanoparticle (NP) decoration that is based on: (i) a spacer polymer, commonly biotin-polyethylene-glycol-thiol, whose grafting density and molecular weight can be tuned for optimized performance, and (ii) protein binding peptides, such as cell penetrating peptides (CPPs), cancer-targeting peptides, or nuclear localization signal (NLS) peptides, that are linked to the PEG free-end by universal chemistry. We manifested our platform with two different bromo-acetamide (Br-Ac) modified NLSs. We used cell extract-based and live cell assays to demonstrate the recruitment of dynein motor proteins, which drive the NP active transport toward the nucleus, and the enhancement of cellular and nuclear entry, manifesting the properties of NLS as a CPP. Our control of the NP decoration scheme, and the modularity of our platform, carry great advantages for nano-carrier design for drug delivery applications.


Subject(s)
Kinesins , Nanoparticles , Polyethylene Glycols , Polymers
3.
J Mater Chem B ; 11(33): 8033-8045, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37534429

ABSTRACT

Mineral particles that form in soft tissues in association with disease conditions are heterogeneous in their composition and physiochemical properties. Hence, it is challenging to study the effect of mineral type on disease progression in a high-throughput and realistic manner. For example, most early breast precancer lesions, termed ductal carcinoma in situ (DCIS), contain microcalcifications (MCs), calcium-containing pathological minerals. The most common type of MCs is calcium phosphate crystals, mainly carbonated apatite; it is associated with either benign or malignant lesions. In vitro studies indicate that the crystal properties of apatite MCs can affect breast cancer progression. A less common type of MCs is calcium oxalate dihydrate (COD), which is almost always found in benign lesions. We developed a 3D tumor model of multicellular spheroids of human precancer cells containing synthetic MC analogs that link the crystal properties of MCs with the progression of breast precancer to invasive cancer. Using this 3D model, we show that apatite crystals induce Her2 overexpression in DCIS cells. This tumor-triggering effect is increased when the carbonate fraction in the MCs decreases. COD crystals, in contrast, decrease Her2 expression in the spheroids, even compared with a control group with no added MC analogs. Furthermore, COD decreases cell proliferation and migration in DCIS monolayers compared to untreated cells and cells incubated with apatite crystals. This finding suggests that COD is not randomly located only in benign lesions-it may actively contribute to suppressing precancer progression in its surroundings. Our model provides an easy-to-manipulate platform to better understand the interactions between mineral particles and their biological microenvironment. A better understanding of the effect of the crystal properties of MCs on precancer progression will potentially provide new directions for better precancer prognosis and treatment.


Subject(s)
Breast Neoplasms , Calcinosis , Carcinoma, Intraductal, Noninfiltrating , Humans , Female , Carcinoma, Intraductal, Noninfiltrating/pathology , Spheroids, Cellular/metabolism , Breast Neoplasms/pathology , Calcinosis/metabolism , Minerals , Apatites , Tumor Microenvironment
4.
Acta Biomater ; 161: 275-284, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36931418

ABSTRACT

Thyroid nodules (TNs) are common neck ultrasonography (US) findings, yet only 5-10% of these nodules harbor thyroid cancer (TC). When US characteristics are consistent with an intermediate or high suspicion for TN malignancy, fine needle aspiration for cytology (FNAC) is indicated. The main limitation of FNAC is that cytological results can be indeterminate in up to 30% of cases, necessitating reevaluation through repeated FNAC, expensive molecular testing, or diagnostic thyroid lobe resection. As such, there is a need for further refinement of current diagnostic algorithms for TNs without subjecting patients to additional invasive procedures. As calcifications detected during thyroid US are considered a high-risk feature for malignancy, we used the material remaining following routine thyroid FNAC to isolate microscopic calcifications (MCs). We then characterized the elemental composition, morphology, and crystal phases of these MCs, ultimately revealing differences between the MCs from benign and malignant TNs. Specifically, thyroid MCs were identified as calcium phosphate crystals containing varying levels of magnesium, sodium, iron, and zinc. MCs obtained from malignant TNs, mainly papillary thyroid carcinoma, were composed of sub-micrometer spherical particles, whereas MCs from benign TNs consisted of faceted particles. While samples from most patients with a final diagnosis of malignant TNs (50% of them with indeterminate cytology) harbored zinc-containing MCs, zinc was largely absent in MCs from benign TNs (23% with indeterminate or non-diagnostic cytology). Together, these data suggest that the presence of zinc in MCs isolated from samples collected during routine FNAC may potentially offer value as a biomarker of TN malignancy. STATEMENT OF SIGNIFICANCE: As up to 40% of patients assessed for thyroid malignancy do not receive a definite diagnosis following thyroid nodule (TN) fine needle aspiration (FNA), there is a pressing need to improve the accuracy of current diagnostic algorithms. Chemical analyses of microscopic calcifications (MCs) may serve as a diagnostic target. We developed a straightforward protocol to chemically characterize MCs from excess material collected from TNs during routine FNA and found that these MCs differed between benign and malignant TNs. Specifically, zinc in TN-derived MCs may indicate a higher nodule malignancy risk, thus increasing the diagnostic accuracy of the FNA procedure, reducing the need for recurrent biopsies and diagnostic surgical procedures, and decreasing the costs, uncertainty, and stress faced by affected patients.


Subject(s)
Thyroid Neoplasms , Thyroid Nodule , Thyroid Nodule/diagnosis , Thyroid Nodule/pathology , Thyroid Nodule/surgery , Biopsy, Fine-Needle/methods , Zinc/chemistry , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/pathology , Thyroid Neoplasms/surgery , Humans , Biomarkers
5.
Int J Mol Sci ; 22(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34445598

ABSTRACT

Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cytoplasmic extracts. To determine how motor-motor interactions influenced motility on the single microtubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors Nm increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of Nm. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.


Subject(s)
Cell Movement , Cytoplasm/metabolism , Dyneins/metabolism , Microtubules/metabolism , Nanoparticles/metabolism , Biological Transport , Biological Transport, Active , HeLa Cells , Humans , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...