Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35328579

ABSTRACT

Hematopoietic stem cell transplantation (HSCT) represents the only curative treatment option for numerous hematologic malignancies. While the influence of donor age and the composition of the graft have already been examined in clinical and preclinical studies, little information is available on the extent to which different hematological subpopulations contribute to the dynamics of the reconstitution process and on whether and how these contributions are altered with age. In a murine model of HSCT, we therefore simultaneously tracked different cultivated and transduced hematopoietic stem and progenitor cell (HSPC) populations using a multicolor-coded barcode system (BC32). We studied a series of age-matched and age-mismatched transplantations and compared the influence of age on the reconstitution dynamics. We show that reconstitution from these cultured and assembled grafts was substantially driven by hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) independent of age. The reconstitution patterns were polyclonal and stable in all age groups independently of the variability between individual animals, with higher output rates from MPPs than from HSCs. Our experiments suggest that the dynamics of reconstitution and the contribution of cultured and individually transduced HSPC subpopulations are largely independent of age. Our findings support ongoing efforts to expand the application of HSCT in older individuals as a promising strategy to combat hematological diseases, including gene therapy applications.


Subject(s)
Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Animals , Genetic Therapy , Hematologic Neoplasms/therapy , Hematopoietic Stem Cells , Mice
2.
Cell Rep ; 25(8): 2208-2222.e7, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30463016

ABSTRACT

Local recurrence after surgery for head and neck squamous cell carcinoma (HNSCC) remains a common event associated with a dismal prognosis. Improving this outcome requires a better understanding of cancer cell populations that expand from postsurgical minimal residual disease (MRD). Therefore, we assessed clonal dynamics in a surgical model of barcoded HNSCC growing in the submental region of immunodeficient mice. Clonal substitution and massive reduction of clonal heterogeneity emerged as hallmarks of local recurrence, as the clones dominating in less heterogeneous recurrences were scarce in their matched primary tumors. These lineages were selected by their ability to persist after surgery and competitively expand from MRD. Clones enriched in recurrences exhibited both private and shared genetic features and likely originated from ancestors shared with clones dominating in primary tumors. They demonstrated high invasiveness and epithelial-to-mesenchymal transition, eventually providing an attractive target for obtaining better local control for these tumors.


Subject(s)
Models, Anatomic , Neoplasm Recurrence, Local/pathology , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/surgery , Animals , Biomarkers, Tumor/metabolism , Carcinogenesis/pathology , Cell Line, Tumor , Cell Lineage , Cell Proliferation , Clone Cells , Disease Models, Animal , Epithelial-Mesenchymal Transition , Female , Humans , Male , Mice, Nude , Models, Statistical , Neoplastic Stem Cells/pathology , Neprilysin/metabolism , Phenotype , Squamous Cell Carcinoma of Head and Neck/genetics , Xenograft Model Antitumor Assays
3.
Hum Gene Ther ; 28(10): 926-937, 2017 10.
Article in English | MEDLINE | ID: mdl-28847169

ABSTRACT

Monitoring the fate of individual cell clones is an important task to better understand normal tissue regeneration, for example after hematopoietic stem cell (HSC) transplantation, but also cancerogenesis. Based on their integration into the host cell's genome, retroviral vectors are commonly used to stably mark target cells and their progeny. The development of genetic barcoding techniques has opened new possibilities to determine clonal composition and dynamics in great detail. A modular genetic barcode was recently introduced consisting of 32 variable positions (BC32) with a customized backbone, and its advantages were demonstrated with regard to barcode calling and quantification. The study presented applied the BC32 system in a complex in vivo situation, namely to analyze clonal reconstitution dynamics for HSC grafts consisting of up to three cell populations with distinguishable barcodes using different alpha- and lentiviral vectors. In a competitive transplantation setup, it was possible to follow the differently marked cell populations within individual animals. This enabled the clonal contribution of the different BC32 constructs during reconstitution and long-term hematopoiesis in the peripheral blood and the spatial distribution in bone marrow and spleen to be identified. Thus, it was demonstrated that the system allows the output of individually marked cells to be tracked in vivo and their influence on clonal dynamics to be analyzed. Successful application of the BC32 system in a complex, competitive in vivo situation provided proof-of-principle that its high complexity and the large Hamming distance between individual barcodes, combined with the easy customization, facilitate efficient and precise quantification, even without prior knowledge of individual barcode sequences. Importantly, simultaneous high-sensitivity analyses of different cell populations in single animals may significantly reduce numbers of animals required to investigate specific scientific questions in accordance with RRR principles. It is concluded that this BC32 system will be excellently suited for various research applications in regenerative medicine and cancer biology.


Subject(s)
Clonal Evolution/genetics , Clone Cells , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Gene Expression , Gene Order , Genetic Vectors/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Lentivirus/genetics , Mice , Promoter Regions, Genetic , Transduction, Genetic , Transgenes
4.
Mol Cancer ; 16(1): 120, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28709463

ABSTRACT

BACKGROUND: Clonal competition in cancer describes the process in which the progeny of a cell clone supersedes or succumbs to other competing clones due to differences in their functional characteristics, mostly based on subsequently acquired mutations. Even though the patterns of those mutations are well explored in many tumors, the dynamical process of clonal selection is underexposed. METHODS: We studied the dynamics of clonal competition in a BcrAbl-induced leukemia using a γ-retroviral vector library encoding the oncogene in conjunction with genetic barcodes. To this end, we studied the growth dynamics of transduced cells on the clonal level both in vitro and in vivo in transplanted mice. RESULTS: While we detected moderate changes in clonal abundancies in vitro, we observed monoclonal leukemias in 6/30 mice after transplantation, which intriguingly were caused by only two different BcrAbl clones. To analyze the success of these clones, we applied a mathematical model of hematopoietic tissue maintenance, which indicated that a differential engraftment capacity of these two dominant clones provides a possible explanation of our observations. These findings were further supported by additional transplantation experiments and increased BcrAbl transcript levels in both clones. CONCLUSION: Our findings show that clonal competition is not an absolute process based on mutations, but highly dependent on selection mechanisms in a given environmental context.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplasm Transplantation , Animals , Base Sequence , Carcinogenesis/pathology , Clone Cells , Computer Simulation , Gene Expression Regulation, Leukemic , Genetic Vectors/metabolism , Interleukin-3/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice, Inbred BALB C , Models, Biological , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcriptome/genetics
5.
Sci Rep ; 7: 43249, 2017 03 03.
Article in English | MEDLINE | ID: mdl-28256524

ABSTRACT

Genetic barcodes are increasingly used to track individual cells and to quantitatively assess their clonal contributions over time. Although barcode quantification relies entirely on counting sequencing reads, detailed studies about the method's accuracy are still limited. We report on a systematic investigation of the relation between barcode abundance and resulting read counts after amplification and sequencing using cell-mixtures that contain barcodes with known frequencies ("miniBulks"). We evaluated the influence of protocol modifications to identify potential sources of error and elucidate possible limitations of the quantification approach. Based on these findings we designed an advanced barcode construct (BC32) to improved barcode calling and quantification, and to ensure a sensitive detection of even highly diluted barcodes. Our results emphasize the importance of using curated barcode libraries to obtain interpretable quantitative data and underline the need for rigorous analyses of any utilized barcode library in terms of reliability and reproducibility.


Subject(s)
Cell Count/methods , DNA Barcoding, Taxonomic/methods , HEK293 Cells , Humans , Nucleic Acid Amplification Techniques , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, DNA
6.
Mol Ther ; 25(3): 621-633, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28109958

ABSTRACT

Intratumoral heterogeneity has been identified as one of the strongest drivers of treatment resistance and tumor recurrence. Therefore, investigating the complex clonal architecture of tumors over time has become a major challenge in cancer research. We developed a new fluorescent "optical barcoding" technique that allows fast tracking, identification, and quantification of live cell clones in vitro and in vivo using flow cytometry (FC). We optically barcoded two cell lines derived from malignant glioma, an exemplary heterogeneous brain tumor. In agreement with mathematical combinatorics, we demonstrate that up to 41 clones can unambiguously be marked using six fluorescent proteins and a maximum of three colors per clone. We show that optical barcoding facilitates sensitive, precise, rapid, and inexpensive analysis of clonal composition kinetics of heterogeneous cell populations by FC. We further assessed the quantitative contribution of multiple clones to glioblastoma growth in vivo and we highlight the potential to recover individual viable cell clones by fluorescence-activated cell sorting. In summary, we demonstrate that optical barcoding is a powerful technique for clonal cell tracking in vitro and in vivo, rendering this approach a potent tool for studying the heterogeneity of complex tissues, in particular, cancer.


Subject(s)
Cell Tracking/methods , Clonal Evolution , Neoplasms/pathology , Cell Line , Flow Cytometry , Fluorescent Dyes , Gene Order , Genetic Vectors/genetics , Humans , Lentivirus/genetics , Reproducibility of Results , Sensitivity and Specificity , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...