Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(2): e0246885, 2021.
Article in English | MEDLINE | ID: mdl-33607651

ABSTRACT

Bacillus thuringiensis (Bt) belongs to the Bacillus cereus (Bc) group, well known as an etiological agent of foodborne outbreaks (FBOs). Bt distinguishes itself from other Bc by its ability to synthesize insecticidal crystals. However, the search for these crystals is not routinely performed in food safety or clinical investigation, and the actual involvement of Bt in the occurrence of FBOs is not known. In the present study, we reveal that Bt was detected in the context of 49 FBOs declared in France between 2007 and 2017. In 19 of these FBOs, Bt was the only microorganism detected, making it the most likely causal agent. Searching for its putative origin of contamination, we noticed that more than 50% of Bt isolates were collected from dishes containing raw vegetables, in particular tomatoes (48%). Moreover, the genomic characterization of isolates showed that most FBO-associated Bt isolates exhibited a quantified genomic proximity to Bt strains, used as biopesticides, especially those from subspecies aizawai and kurstaki. Taken together, these results strengthen the hypothesis of an agricultural origin for the Bt contamination and call for further investigations on Bt pesticides.


Subject(s)
Bacillus thuringiensis/genetics , Food Microbiology , Genomics , Genotype , Phenotype , France , Genome, Bacterial/genetics
2.
Plant Physiol ; 150(1): 506-20, 2009 May.
Article in English | MEDLINE | ID: mdl-19329568

ABSTRACT

Association genetics is a powerful method to track gene polymorphisms responsible for phenotypic variation, since it takes advantage of existing collections and historical recombination to study the correlation between large genetic diversity and phenotypic variation. We used a collection of 375 maize (Zea mays ssp. mays) inbred lines representative of tropical, American, and European diversity, previously characterized for genome-wide neutral markers and population structure, to investigate the roles of two functionally related candidate genes, Opaque2 and CyPPDK1, on kernel quality traits. Opaque2 encodes a basic leucine zipper transcriptional activator specifically expressed during endosperm development that controls the transcription of many target genes, including CyPPDK1, which encodes a cytosolic pyruvate orthophosphate dikinase. Using statistical models that correct for population structure and individual kinship, Opaque2 polymorphism was found to be strongly associated with variation of the essential amino acid lysine. This effect could be due to the direct role of Opaque2 on either zein transcription, zeins being major storage proteins devoid of lysine, or lysine degradation through the activation of lysine ketoglutarate reductase. Moreover, we found that a polymorphism in the Opaque2 coding sequence and several polymorphisms in the CyPPDK1 promoter nonadditively interact to modify both lysine content and the protein-versus-starch balance, thus revealing the role in quantitative variation in plants of epistatic interactions between a transcriptional activator and one of its target genes.


Subject(s)
DNA-Binding Proteins/genetics , Epistasis, Genetic , Phenotype , Plant Proteins/genetics , Pyruvate, Orthophosphate Dikinase/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Zea mays/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Genotype , Lysine/metabolism , Mutagenesis, Insertional , Plant Proteins/metabolism , Plant Proteins/physiology , Polymorphism, Single Nucleotide , Pyruvate, Orthophosphate Dikinase/metabolism , Pyruvate, Orthophosphate Dikinase/physiology , Sequence Deletion , Starch/metabolism , Trans-Activators/metabolism , Trans-Activators/physiology , Transcription Factors/metabolism , Transcription Factors/physiology , Zea mays/anatomy & histology
SELECTION OF CITATIONS
SEARCH DETAIL
...