Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 84(9): 1475-1490, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38319231

ABSTRACT

Trastuzumab emtansine (T-DM1) was the first and one of the most successful antibody-drug conjugates (ADC) approved for treating refractory HER2-positive breast cancer. Despite its initial clinical efficacy, resistance is unfortunately common, necessitating approaches to improve response. Here, we found that in sensitive cells, T-DM1 induced spindle assembly checkpoint (SAC)-dependent immunogenic cell death (ICD), an immune-priming form of cell death. The payload of T-DM1 mediated ICD by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which were lost in resistance. Accordingly, ICD-related gene signatures in pretreatment samples correlated with clinical response to T-DM1-containing therapy, and increased infiltration of antitumor CD8+ T cells in posttreatment samples was correlated with better T-DM1 response. Transforming acidic coiled-coil containing 3 (TACC3) was overexpressed in T-DM1-resistant cells, and T-DM1 responsive patients had reduced TACC3 protein expression whereas nonresponders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacologic inhibition of TACC3 restored T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition in vivo elicited ICD in a vaccination assay and potentiated the antitumor efficacy of T-DM1 by inducing dendritic cell maturation and enhancing intratumoral infiltration of cytotoxic T cells. Together, these results illustrate that ICD is a key mechanism of action of T-DM1 that is lost in resistance and that targeting TACC3 can restore T-DM1-mediated ICD and overcome resistance. SIGNIFICANCE: Loss of induction of immunogenic cell death in response to T-DM1 leads to resistance that can be overcome by targeting TACC3, providing an attractive strategy to improve the efficacy of T-DM1.


Subject(s)
Ado-Trastuzumab Emtansine , Breast Neoplasms , Immunogenic Cell Death , Microtubule-Associated Proteins , Receptor, ErbB-2 , Humans , Female , Breast Neoplasms/immunology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Immunogenic Cell Death/drug effects , Receptor, ErbB-2/metabolism , Ado-Trastuzumab Emtansine/pharmacology , Ado-Trastuzumab Emtansine/therapeutic use , Animals , Mice , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/immunology , Xenograft Model Antitumor Assays , Cell Line, Tumor , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Drug Resistance, Neoplasm/immunology , Drug Resistance, Neoplasm/drug effects , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , CD8-Positive T-Lymphocytes/immunology
2.
bioRxiv ; 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37745348

ABSTRACT

Immunogenic cell death (ICD), an immune-priming form of cell death, has been shown to be induced by several different anti-cancer therapies. Despite being the first and one of the most successful antibody-drug conjugates (ADCs) approved for refractory HER2-positive breast cancer, little is known if response and resistance to trastuzumab emtansine (T-DM1) involves ICD modulation that can be leveraged to enhance T-DM1 response. Here, we report that T-DM1 induces spindle assembly checkpoint (SAC)-dependent ICD in sensitive cells by inducing eIF2α phosphorylation, surface exposure of calreticulin, ATP and HMGB1 release, and secretion of ICD-related cytokines, all of which are lost in resistance. Accordingly, an ICD-related gene signature correlates with clinical response to T-DM1-containing therapy. We found that transforming acidic coiled-coil containing 3 (TACC3) is overexpressed in T-DM1 resistant cells, and that T-DM1 responsive patients have reduced TACC3 protein while the non-responders exhibited increased TACC3 expression during T-DM1 treatment. Notably, genetic or pharmacological inhibition of TACC3 revives T-DM1-induced SAC activation and induction of ICD markers in vitro. Finally, TACC3 inhibition elicits ICD in vivo shown by vaccination assay, and it potentiates T-DM1 by inducing dendritic cell (DC) maturation and enhancing infiltration of cytotoxic T cells in the human HER2-overexpressing MMTV.f.huHER2#5 (Fo5) transgenic model. Together, our results show that ICD is a key mechanism of action of T-DM1 which is lost in resistance, and that targeting TACC3 restores T-DM1-mediated ICD and overcomes resistance.

3.
Turk J Haematol ; 40(1): 1-10, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36719099

ABSTRACT

Antigen-specific retargeting of cytotoxic lymphocytes against tumor-associated antigens has thus far remained largely dependent on chimeric antigen receptors (CARs) that can be constructed by the fusion of an extracellular targeting domain (classically a single-chain variable fragment from an antibody) fused with intracellular signaling domains to trigger activation of T or natural killer (NK) cells. A major limitation of CAR-based therapies is that this technology only allows for the targeting of antigens that would be located on the surface of target cells while non-surface antigens, which affect approximately three-fourths of all human genes, remain out of reach. The targeting of non-surface antigens is only possible using inherent T cell receptor (TCR) mechanisms. However, introducing a second TCR into T cells via genetic modification is problematic due to the heterodimeric nature of the TCR ligand-binding domain, which is composed of TCR α and ß chains. It has been observed that the delivery of a second TCR α/ß pair may lead to the mispairing of new TCR chains with the endogenously expressed ones and create mixed TCR dimers, and this has negatively affected the advancement of TCR-based T cell therapies. Recently, NK cells have been put forward as possible effectors for TCR gene therapy. Since NK cells do not endogenously express TCR chains, this seems to be an infallible approach to circumventing the problem of mispairing. Moreover, the similarity of intracellular signaling pathways and mechanisms of cytotoxicity between NK and T cells ensures that the triggering of antigen-specific responses by the TCR/CD3 complex can be used to induce antigen-specific cytotoxicity by TCR-modified NK (TCR-NK) cells. This review provides an overview of the initial studies of TCR-NK cells, identifies open questions in the field, and defines the place of this approach within the spectrum of adoptive immunotherapy techniques that rely on cytotoxic lymphocytes.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Killer Cells, Natural/metabolism , Receptors, Antigen, T-Cell/genetics , Neoplasms/therapy , T-Lymphocytes , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Chimeric Antigen/genetics , Cytotoxicity, Immunologic
4.
Cancer Res ; 81(12): 3319-3332, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33863778

ABSTRACT

Extracellular adenosine in tumors can suppress immune responses and promote tumor growth. Adenosine deaminase 2 (ADA2) converts adenosine into inosine. The role of ADA2 in cancer and whether it can target adenosine for cancer therapy has not been investigated. Here we show that increased ADA2 expression is associated with increased patient survival and enrichment of adaptive immune response pathways in several solid tumor types. Several ADA2 variants were created to improve catalytic efficiency, and PEGylation was used to prolong systemic exposure. In mice, PEGylated ADA2 (PEGADA2) inhibited tumor growth by targeting adenosine in an enzyme activity-dependent manner and thereby modulating immune responses. These findings introduce endogenous ADA2 expression as a prognostic factor and PEGADA2 as a novel immunotherapy for cancer. SIGNIFICANCE: This study identifies ADA2 as a prognostic factor associated with prolonged cancer patient survival and introduces the potential of enzymatic removal of adenosine with engineered ADA2 for cancer immunotherapy.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine/antagonists & inhibitors , Intercellular Signaling Peptides and Proteins/metabolism , Neoplasms/prevention & control , Adenosine Deaminase/genetics , Animals , Apoptosis , Cell Proliferation , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Neoplasms/enzymology , Neoplasms/pathology , Prognosis , Survival Rate , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Eur J Immunol ; 49(8): 1278-1290, 2019 08.
Article in English | MEDLINE | ID: mdl-31054264

ABSTRACT

Introduction of Chimeric Antigen Receptors to NK cells has so far been the main practical method for targeting NK cells to specific surface antigens. In contrast, T cell receptor (TCR) gene delivery can supply large populations of cytotoxic T-lymphocytes (CTL) targeted against intracellular antigens. However, a major barrier in the development of safe CTL-TCR therapies exists, wherein the mispairing of endogenous and genetically transferred TCR subunits leads to formation of TCRs with off-target specificity. To overcome this and enable specific intracellular antigen targeting, we have tested the use of NK cells for TCR gene transfer to human cells. Our results show that ectopic expression of TCR α/ß chains, along with CD3 subunits, enables the functional expression of an antigen-specific TCR complex on NK cell lines NK-92 and YTS, demonstrated by using a TCR against the HLA-A2-restricted tyrosinase-derived melanoma epitope, Tyr368-377 . Most importantly, the introduction of a TCR complex to NK cell lines enables MHC-restricted, antigen-specific killing of tumor cells both in vitro and in vivo. Targeting of NK cells via TCR gene delivery stands out as a novel tool in the field of adoptive immunotherapy which can also overcome the major hurdle of "mispairing" in TCR gene therapy.


Subject(s)
Immunotherapy, Adoptive/methods , Killer Cells, Natural/physiology , Melanoma/therapy , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Chimeric Antigen/genetics , Antigens, Neoplasm/immunology , Cell Line , Cytotoxicity, Immunologic , HLA-A2 Antigen/metabolism , Humans , Killer Cells, Natural/transplantation , Melanoma/immunology , Monophenol Monooxygenase/immunology , Peptides/immunology , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...