Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(43): 28859-28870, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746578

ABSTRACT

Geopolymer (GP) inorganic binders have a superior acid resistance compared to conventional cement (e.g., Portland cement, PC) binders, have better microbial compatibility, and are suitable for introducing electrically conductive additives to improve electron and ion transfer properties. In this study, GP-graphite (GPG) composites and PC-graphite (PCG) composites with a graphite content of 1-10 vol % were prepared and characterized. The electrical conductivity percolation threshold of the GPG and PCG composites was around 7 and 8 vol %, respectively. GPG and PCG composites with a graphite content of 8 to 10 vol % were selected as anode electrodes for the electrochemical analysis in two-chamber polarized microbial fuel cells (MFCs). Graphite electrodes were used as the positive control reference material. Geobacter sulfurreducens was used as a biofilm-forming and electroactive model organism for MFC experiments. Compared to the conventional graphite anodes, the anode-respiring biofilms resulted in equal current production on GPG composite anodes, whereas the PCG composites showed a very poor performance. The largest mean value of the measured current densities of a GPG composite used as anodes in MFCs was 380.4 µA cm-2 with a standard deviation of 129.5 µA cm-2. Overall, the best results were obtained with electrodes having a relatively low Ohmic resistance, that is, GPG composites and graphite. The very first approach employing sustainable GPs as a low-cost electrode binder material in an MFC showed promising results with the potential to greatly reduce the production costs of MFCs, which would also increase the feasibility of MFC large-scale applications.

2.
Materials (Basel) ; 14(18)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34576588

ABSTRACT

Wear resistant ceramic coatings were generated on novel commercially pure titanium grade 4+ alloys by the plasma electrolytic oxidation technique (PEO) in an aluminate and zirconia containing electrolyte. The coatings were obtained adopting a full regular two-level factorial design of experiments (DoE) varying the PEO process parameters current density, repetition rate and duty cycle. The generated coatings were characterized with respect to its wear resistance and mechanical properties by reciprocal ball-on-flat tests and nanoindentation measurements. Thickness, morphology and phase formation of the PEO coatings was analyzed by scanning electron microscopy (SEM/EDS) and X-ray diffraction. XRD results indicate the formation of crystalline aluminium titanate (TiAl2O5) as well as t-ZrO2 and alumina leading to an increase in hardness and wear resistance of the PEO coatings. Evaluation of the DoE's parameter interaction shows that the main effects for generating wear resistant coatings are current density and repetition rate. In particular, the formation of mechanically stable and adhesive corundum and zirconia containing coatings with increasing current density and frequency turned out to be responsible for the improvement of the tribological properties. Overall, the PEO processing significantly improves the wear resistance of the CP titanium base alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...