Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
In Vivo ; 38(3): 1064-1073, 2024.
Article in English | MEDLINE | ID: mdl-38688644

ABSTRACT

BACKGROUND/AIM: Since acute myeloid leukemias still represent the most aggressive type of adult acute leukemias, the profound understanding of disease pathology is of paramount importance for diagnostic and therapeutic purposes. Hence, this study aimed to explore the real-time disease fate with the establishment of an experimental myelomonoblastic leukemia (My1/De) rat model using preclinical positron emission tomography (PET) and whole-body autoradiography. MATERIALS AND METHODS: In vitro [18F]F-FDG uptake studies were performed to compare the tracer accumulation in the newly cultured My1/De tumor cell line (blasts) with that in healthy control and My1/De bone marrow suspensions. Post transplantation of My1/De cells under the left renal capsule of Long-Evans rats, primary My1/De tumorigenesis, and metastatic propagation were investigated using [18F]F-FDG PET imaging, whole-body autoradiography and phosphorimage analyses. To assess the organ uptake profile of the tumor-carrying animals we accomplished ex vivo biodistribution studies. RESULTS: The tracer accumulation in the My1/De culture cells exceeded that of both the tumorous and the healthy bone marrow suspensions (p<0.01). Based on in vivo imaging, the subrenally transplanted My1/De cells resulted in the development of leukemia in the abdominal organs, and metastasized to the mesenterial and thoracic parathymic lymph nodes (PTLNs). The lymphatic spread of metastasis was further confirmed by the significantly higher %ID/g values of the metastatic PTLNs (4.25±0.28) compared to the control (0.94±0.34). Cytochemical staining of the peripheral blood, autopsy findings, and wright-Giemsa-stained post-mortem histological sections proved the leukemic involvement of the assessed tissues/organs. CONCLUSION: The currently established My1/De model appears to be well-suited for further leukemia-related therapeutic and diagnostic investigations.


Subject(s)
Autoradiography , Disease Models, Animal , Fluorodeoxyglucose F18 , Positron-Emission Tomography , Animals , Rats , Cell Line, Tumor , Tissue Distribution , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/diagnostic imaging , Radiopharmaceuticals , Male , Humans
2.
In Vivo ; 38(2): 587-597, 2024.
Article in English | MEDLINE | ID: mdl-38418149

ABSTRACT

BACKGROUND/AIM: Since the use of anaesthetics has the drawback of altering radiotracer distribution, preclinical positron emission tomography (PET) imaging findings of anaesthetised animals must be carefully handled. This study aimed at assessing the cerebral [18F]F-FDG uptake pattern in healthy Wistar rats under four different anaesthesia protocols using microPET/magnetic resonance imaging (MRI) examinations. MATERIALS AND METHODS: Post-injection of 15±1.2 MBq of [18F]F-FDG, either while awake or during the isoflurane-induced incubation phase was applied. Prior to microPET/MRI imaging, one group of the rats was subjected to forane-only anaesthesia while the other group was anaesthetised with the co-administration of forane and dexmedetomidine/Dexdor® Results: While as for the whole brain it was the addition of dexmedetomidine/Dexdor® to the anaesthesia protocol that generated the differences between the radiotracer concentrations of the investigated groups, regarding the cortex, the [18F]F-FDG accumulation was rather affected by the way of incubation. To ensure the most consistent and highest uptake, forane-induced anaesthesia coupled with an awake uptake condition seemed to be most suitable method of anaesthetisation for cerebral metabolic assessment. Diminished whole brain and cortical tracer accumulation detected upon dexmedetomidine/Dexdor® administration highlights the significance of the mechanism of action of different anaesthetics on radiotracer pharmacokinetics. CONCLUSION: Overall, the standardization of PET protocols is of utmost importance to avoid the confounding factors derived from anaesthesia.


Subject(s)
Anesthesia , Anesthetics , Dexmedetomidine , Isoflurane , Rats , Animals , Fluorodeoxyglucose F18/metabolism , Dexmedetomidine/pharmacology , Dexmedetomidine/metabolism , Rats, Wistar , Brain , Positron-Emission Tomography/methods , Anesthetics/pharmacology , Anesthetics/metabolism , Isoflurane/pharmacology , Isoflurane/metabolism , Radiopharmaceuticals/pharmacology
3.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37765089

ABSTRACT

Although radiolabeled alpha-melanocyte stimulating hormone-analogue NAPamide derivatives are valuable melanoma-specific diagnostic probes, their rapid elimination kinetics and high renal uptake may preclude them from being used in clinical settings. We aimed at improving the pharmacokinetics of radiolabeled DOTA-NAPamide compounds by incorporating a 4-(p-iodo-phenyl)-butanoic acid (IPB) into the molecules. Followed by 68Ga-, 205/206Bi-, and 177Lu-labelling, the radiopharmaceuticals ([68Ga]Ga-DOTA-IPB-NAPamide, [205/206Bi]Bi-DOTA-IPB-NAPamide, [177Lu]Lu-DOTA-IPB-NAPamide) were characterized in vitro. To test the imaging behavior of the IPB-containing probes, B16F10 tumor-bearing C57BL/6 mice were subjected to in vivo microPET/microSPECT/CT imaging and ex vivo biodistribution studies. All tracers were stable in vitro, with radiochemical purity exceeding 98%. The use of albumin-binding moiety lengthened the in vivo biological half-life of the IPB-carrying radiopharmaceuticals, resulting in elevated tumor accumulation. Both [68Ga]Ga-DOTA-IPB-NAPamide (5.06 ± 1.08 %ID/g) and [205/206Bi]Bi-DOTA-IPB-NAPamide (4.50 ± 0.98 %ID/g) exhibited higher B16F10 tumor concentrations than their matches without the albumin-binding residue ([68Ga]Ga-DOTA-NAPamide and [205/206Bi]Bi-DOTA-NAPamide: 1.18 ± 0.27 %ID/g and 3.14 ± 0.32; respectively), however; the large amounts of off-target radioactivity do not confirm the benefits of half-life extension for short-lived isotopes. Enhanced [177Lu]Lu-DOTA-IPB-NAPamide tumor uptake even 24 h post-injection proved the advantage of IPB-based prolonged circulation time regarding long-lived radionuclides, although the significant background noise must be addressed in this case as well.

4.
Int J Pharm ; 644: 123344, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37634663

ABSTRACT

Melanocortin-1 receptor (MC1-R) targeting alpha-melanocyte stimulating hormone-analogue (α-MSH) biomolecules labelled with α-emitting radiometal seem to be valuable in the targeted radionuclide therapy of MC1-R positive melanoma malignum (MM). Herein is reported the anti-tumor in vivo therapeutic evaluation of MC1-R-affine [213Bi]Bi-DOTA-NAPamide and HOLDamide treatment in MC1-R positive B16-F10 melanoma tumor-bearing C57BL/6J mice. On the 6th, 8th and 10th days post tumor cell inoculation; the treated groups of mice were intravenously injected with approximately 5 MBq of both amide derivatives. Beyond body weight and tumor volume assessment, [68Ga]Ga-DOTA-HOLDamide and NAPamide-based PET/MRI scans, and ex vivo biodistribution studies were executed 30,- and 90 min postinjection. In the PET/MRI imaging studies the B16-F10 tumors were clearly visualized with both 68Ga-labelled tracers, however, significantly lower tumor-to-muscle (T/M) ratios were observed by using [68Ga]Ga-DOTA-HOLDamide. After alpha-radiotherapy treatment the tumor size of the control group was larger relative to both treated cohorts, while the smallest tumor volumes were observed in the NAPamide-treated subclass on the 10th day. Relatively higher [213Bi]Bi-DOTA-NAPamide accumulation in the B16-F10 tumors (%ID/g: 2.71 ± 0.15) with discrete background activity led to excellent T/M ratios, particularly 90 min postinjection. Overall, the therapeutic application of receptor selective [213Bi]Bi-DOTA-NAPamide seems to be feasible in MC1-R positive MM management.


Subject(s)
Melanoma, Experimental , Receptor, Melanocortin, Type 1 , Animals , Mice , Mice, Inbred C57BL , Gallium Radioisotopes , Tissue Distribution , Melanocyte-Stimulating Hormones , Melanoma, Experimental/drug therapy , Melanoma, Experimental/radiotherapy
5.
J Pharm Biomed Anal ; 229: 115374, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37001274

ABSTRACT

Given the rising pervasiveness of melanocortin-1 receptor (MC1-R) positive melanoma malignum (MM) and pertinent metastases, radiolabelled receptor-affine alpha-melanocyte stimulating hormone-analogue (α-MSH analogue) imaging probes would be of crucial importance in timely tumor diagnostic assessment. Herein we aimed at investigating the biodistribution and the MM targeting potential of newly synthesized 213Bi-conjugated MC1-R specific peptide-based radioligands with the establishment of MC1-R overexpressing MM preclinical model. DOTA-conjugated NAP, -HOLD, -FOLD, -and MARSamide were labelled with 213Bi. Ex vivo biodistribution studies were conducted post-administration of 3.81 ± 0.32 MBq [213Bi]Bi-DOTA conjugated deriva-tives into twenty B16-F10 tumor-bearing C57BL/6 J and healthy mice. Organ Level Internal Dose Assessment (OLINDA) and IDAC-Dose were used to calculate translational data-based absorbed radiation dose in human organs. Moderate or low %ID/g uptake of [213Bi]Bi-DOTA conjugated NAP, -HOLD, -and MARSamide and significantly increased [213Bi]Bi-DOTA-FOLDamide accumulation was observed in the thoracic and abdominal organs (p ≤ 0.01). High [213Bi]Bi-DOTA-NAP (%ID/g:3.76 ± 0.96), -and FOLDamide (%ID/g:3.28 ± 0.95) tumor tracer activity confirmed their MC1-R-affinity. The bladder wall received the highest radiation absorbed dose followed by the kidneys (bladder wall: 1.95·10-2 and 8.97·10-2 mSv/MBq; kidneys: 7.47·10-3 vs. 5.88·10-2 mSv/MBq measured by IDAC and OLINDA; respectively) indicating the suitability of the NAPamide derivative for clinical use. These novel [213Bi]Bi-DOTA-linked peptide probes displaying meaningful MC1-R affinity could be promising molecular probes in MM imaging.


Subject(s)
Melanoma, Experimental , Humans , Animals , Mice , Melanoma, Experimental/diagnostic imaging , alpha-MSH , Receptor, Melanocortin, Type 1/metabolism , Tissue Distribution , Radiopharmaceuticals/chemistry , Mice, Inbred C57BL , Melanocyte-Stimulating Hormones
6.
Pharmaceutics ; 15(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36839813

ABSTRACT

Since NGR-tripeptides (asparagine-glycine-arginine) selectively target neoangiogenesis-associated Aminopeptidase N (APN/CD13) on cancer cells, we aimed to evaluate the in vivo tumour targeting capability of radiolabelled, NGR-containing, ANP/CD13-selective [213Bi]Bi-DOTAGA-cKNGRE in CD13pos. HT1080 fibrosarcoma-bearing severe combined immunodeficient CB17 mice. 10 ± 1 days after cancer cell inoculation, positron emission tomography (PET) was performed applying [68Ga]Ga-DOTAGA-cKNGRE for tumour verification. On the 7th, 8th, 10th and 12th days the treated group of tumourous mice were intraperitoneally administered with 4.68 ± 0.10 MBq [213Bi]Bi-DOTAGA-cKNGRE, while the untreated tumour-bearing animals received 150 µL saline solution. In addition to body weight (BW) and tumour volume measurements, ex vivo biodistribution studies were conducted 30 and 90 min postinjection (pi.). The following quantitative standardised uptake values (SUV) confirmed the detectability of the HT1080 tumours: SUVmean and SUVmax: 0.37 ± 0.09 and 0.86 ± 0.14, respectively. Although no significant difference (p ≤ 0.05) was encountered between the BW of the treated and untreated mice, their tumour volumes measured on the 9th, 10th and 12th days differed significantly (p ≤ 0.01). Relatively higher [213Bi]Bi-DOTAGA-cKNGRE accumulation of the HT1080 neoplasms (%ID/g: 0.80 ± 0.16) compared with the other organs at 90 min time point yields better tumour-to-background ratios. Therefore, the therapeutic application of APN/CD13-affine [213Bi]Bi-DOTAGA- cKNGRE seems to be promising in receptor-positive fibrosarcoma treatment.

7.
Int J Pharm ; 630: 122462, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36462739

ABSTRACT

Cyclodextrin derivates (CyDs) can form complexes with cyclooxygenase-2 induced tumor promoting prostaglandin E2 (PGE2). Based on our previous observations, 68Ga-labelled CyDs may represent promising radiopharmaceuticals in the positron emission tomography (PET) diagnostics of PGE2 positive tumors. We aimed at evaluating the tumor-targeting potential of 68Ga-NODAGA conjugated randomly methylated beta-cyclodextrin (68Ga-NODAGA-RAMEB) and 2-hydroxypropyl-ß-cyclodextrin (68Ga-NODAGA-HPßCD) using in vivo PET imaging with experimental tumor models. Tumor radiopharmaceutical uptake was assessed applying PET and gamma counter in vivo and ex vivo respectively, following the administration of 18FDG, 68Ga-NODAGA-RAMEB or 68Ga-NODAGA-HPßCD via the lateral tail vein to the subsequent tumor-bearing animals: HT1080, A20, PancTu-1, BxPC3, B16-F10, Ne/De and He/De. All investigated tumors were identifiable with both 68Ga-labelled CyDs; however, in vivo results, in correlation with the ex vivo data, revealed that the PGE2 positive BxPC3, A20, Ne/De and He/De tumors presented the highest accumulation. In case of HT1080, A20, B16-F10 tumors significant differences were encountered between the accumulations of both 68Ga-labelled radiopharmaceuticals of the same tumor. Subcutaneously and the orthotopically transplanted Ne/De tumors differed significantly (p ≤ 0.01) regarding tracer uptake. 68Ga-labelled CyDs may open a novel field in the PET diagnostics of PGE2 positive primary tumors and metastases.


Subject(s)
Gallium Radioisotopes , beta-Cyclodextrins , 2-Hydroxypropyl-beta-cyclodextrin , Acetates , Cell Line, Tumor , Dinoprostone , Heterocyclic Compounds, 1-Ring , Positron-Emission Tomography/methods , Radiopharmaceuticals , Animals
8.
Int J Mol Sci ; 23(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36361850

ABSTRACT

Given the rising prevalence of lipid metabolic disorders and malignant diseases, we aimed to establish an in vivo hypercholesterinaemic tumour-bearing rat model for the induction and assessment of these conditions. A normal standard CRLT/N, 2 (baseline),- or 4 (2 + 2, pretreated)-week-long butter and cholesterol rich (BCR) diet was applied to mesoblastic nephroma (Ne/De) and myelomonoblastic leukaemia (My1/De) tumour-bearing and healthy control Long­Evans and Fischer 344 rats. The beginning of chow administration started in parallel with tumour induction and the 2 weeks of pre-transplantation in the baseline and pretreated groups, respectively. Fourteen days post-inoculation, the measurement of lipid parameters and [18F]F-FDG PET/MRI examinations was executed. The comparable lipid status of baseline healthy and tumorous rats proves that regardless of tumour presence, BCR-based hypercholesterolemia was achieved. A higher tumour mass among pretreated tumorous animals was found when compared to the control groups (p < 0.05, p < 0.01). Further, a visually greater [18F]F-FDG accumulation was observed in pretreated BCR tumorous animals; however, the quantitative data (SUVmean: 9.86 ± 0.98, 9.68 ± 1.24; SUVmax: 19.63 ± 1.20; 17.56 ± 3.21 for Ne/De and My1/De, respectively) were not statistically significantly different from those of the CRLT/N tumorous rats (SUVmean: 8.40 ± 1.42, 7.22 ± 1.06 and SUVmax: 15.99 ± 2.22, 12.46 ± 1.96 for control Ne/De and My1/De, respectively). Our model seems to be appropriate for simultaneously investigating hypercholesterolemia and cancer in the same rat.


Subject(s)
Hypercholesterolemia , Kidney Neoplasms , Leukemia , Nephroma, Mesoblastic , Animals , Rats , Fluorodeoxyglucose F18 , Rats, Long-Evans , Positron-Emission Tomography , Kidney Neoplasms/diagnostic imaging , Lipids , Radiopharmaceuticals , Positron Emission Tomography Computed Tomography
9.
Pharmaceutics ; 14(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432695

ABSTRACT

Given that galectin-3 (Gal-3) is a ß-galactoside-binding lectin promoting tumor growth and metastatis, it could be a valuable target for the treatment of Gal-3-expressing neoplasms. An aromatic group introduced to the C-3' position of lactosamine increased its affinity for Gal-3. Herein, we aimed at developing a radiopharmaceutical for the detection of Gal-3 positive malignancies. To enhance tumor specificity, a heterodimeric radiotracer capable of binding to both Gal-3 and αvß3 integrin was also synthetized. Arginine-glycine-asparagine (RGD) peptide is the ligand of angiogenesis- and metastasis-associated αvß3 integrin. Following the synthesis of the chelator-conjugated (2-naphthyl)methylated lactosamine, the obtained compound was applied as a precursor for radiolabeling and was conjugated to the RGD peptide by click reaction as well. Both synthetized precursors were radiolabeled with 68Ga, resulting in high labeling yield (>97). The biological studies were carried out using B16F10 melanoma tumor-bearing C57BL6 mice. High tumor accumulation of both labeled lactosamine derivatives­detected by in vivo PET and ex vivo biodistribution studies­indicated their potential for melanoma detection. However, the heterodimer radiotracer showed high hepatic uptake, while low liver accumulation characterized chelator-conjugated lactosamine, resulting in PET images with excellent contrast. Therefore, this novel carbohydrate-based radiotracer is suitable for the highly selective determination of Gal-3-expressing melanoma cells.

10.
Int J Mol Sci ; 23(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36430429

ABSTRACT

Aluminum (Al) excess and hypercholesterinaemia are established risks of Alzheimer's disease (AD). The aim of this study was to establish an AD-resembling hypercholesterinaemic animal model-with the involvement of 8 week and 48 week-old Fischer-344 rats-by Al administration for the safe and rapid verification of ß-amyloid-targeted positron emission tomography (PET) radiopharmaceuticals. Measurement of lipid parameters and ß-amyloid-affine [11C]C-Pittsburgh Compound B ([11C]C-PIB) PET examinations were performed. Compared with the control, the significantly elevated cholesterol and LDL levels of the rats receiving the cholesterol-rich diet support the development of hypercholesterinaemia (p ≤ 0.01). In the older cohort, a notably increased age-related radiopharmaceutical accumulation was registered compared to in the young (p ≤ 0.05; p ≤ 0.01). A monotherapy-induced slight elevation of mean standardised uptake values (SUVmean) was statistically not significant; however, adult rats administered a combined diet expressed remarkable SUVmean increment compared to the adult control (SUVmean: from 0.78 ± 0.16 to 1.99 ± 0.28). One and two months after restoration to normal diet, the cerebral [11C]C-PIB accumulation of AD-mimicking animals decreased by half and a third, respectively, to the baseline value. The proposed in vivo Al-induced AD-resembling animal system seems to be adequate for the understanding of AD neuropathology and future drug testing and radiopharmaceutical development.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Animals , Rats , Alzheimer Disease/chemically induced , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Aluminum/toxicity , Radiopharmaceuticals , Positron-Emission Tomography/methods
11.
Int J Mol Sci ; 23(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36077458

ABSTRACT

Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa). Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44 conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein, the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3 tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of [44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel [44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging of GRPR-positive PCa.


Subject(s)
Prostatic Neoplasms , Receptors, Bombesin , Acetates , Animals , Bombesin , Cell Line, Tumor , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring , Humans , Male , Mice , Positron-Emission Tomography/methods , Prostatic Neoplasms/metabolism , Receptors, Bombesin/metabolism
12.
Pharmaceuticals (Basel) ; 15(6)2022 May 26.
Article in English | MEDLINE | ID: mdl-35745585

ABSTRACT

Hypoxia promotes angiogenesis, which is crucial for tumor growth, and induces malignant progression and increases the therapeutic resistance. Positron emission tomography (PET) enables the detection of the hypoxic regions in tumors using 2-nitroimidazole-based radiopharmaceuticals. We describe here a physicochemical study of the Sc(DO3AM-NI) complex, which indicates: (a) relatively slow formation of the Sc(DO3AM-NI) chelate in acidic solution; (b) lower thermodynamic stability than the reference Sc(DOTA); (c) however, it is substantially more inert and consequently can be regarded as an excellent Sc-binder system. In addition, we report a comparison of 44Sc-labeled DO3AM-NI with its known 68Ga-labeled analog as a hypoxia PET probe. The in vivo and ex vivo biodistributions of 44Sc- and 68Ga-labeled DO3AM-NI in healthy and KB tumor-bearing SCID mice were examined 90 and 240 min after intravenous injection. No significant difference was found between the accumulation of 44Sc- and 68Ga-labeled DO3AM-NI in KB tumors. However, a significantly higher accumulation of [68Ga]Ga(DO3AM-NI) was found in liver, spleen, kidney, intestine, lung, heart and brain than for [44Sc]Sc(DO3AM-NI), leading to a lower tumor/background ratio. The tumor-to-muscle (T/M) ratio of [44Sc]Sc(DO3AM-NI) was approximately 10-15-fold higher than that of [68Ga]Ga(DO3AM-NI) at all time points. Thus, [44Sc]Sc(DO3AM-NI) allows the visualization of KB tumors with higher resolution, making it a promising hypoxia-specific PET radiotracer.

13.
In Vivo ; 36(4): 1667-1675, 2022.
Article in English | MEDLINE | ID: mdl-35738627

ABSTRACT

BACKGROUND/AIM: Changes in the expression of neo-angiogenic molecules in the primary tumor and its metastases may significantly affect the efficacy of therapies. The aim of this study was to evaluate the alterations in aminopeptidase N (APN/CD13) and αvß3 integrin receptor expression in serially transplanted mesoblastic nephroma tumor (Ne/De) metastases using 68Gallium (68Ga)-labeled NOTA-cNGR and NODAGA-RGD radiotracers and preclinical positron emission tomography (PET) imaging. MATERIALS AND METHODS: Primary and metastatic mesoblastic nephroma (Ne/De) tumors were induced by subrenal capsule assay (SRCA) in Fischer-344 rats. In vivo PET imaging experiments were performed 8±1 days after the SRCA surgery using intravenously injected 68Ga-NOTA-c(NGR), 68Ga-NODAGA-RGD, and [18F]FDG radiotracers. RESULTS: Among the examined neo-angiogenic molecules, the expression of αvß3 integrin in the tumors was significantly lower than that of APN/CD13. This observation was confirmed by the PET data analysis, where a 2-6-fold higher APN/CD13-specific 68Ga-NOTA-cNGR accumulation was observed in both primary malignancies and metastases. However, a steadily increased accumulation of [18F]FDG, 68Ga-NODAGA-RGD, and 68Ga-NOTA-cNGR was observed in the tumors growing under the renal capsule and in the metastatic parathymic lymph nodes during serial transplantations. The observed increase in 68Ga- NOTA-cNGR accumulation during serial transplantations correlated well with the western blot analysis, where APN/CD13 protein levels were also elevated in the metastatic parathymic lymph nodes. CONCLUSION: The observed increase in glucose metabolism and the up-regulated expression of αvß3 integrin and APN/CD13 during serial transplantations of metastases may indicate enhanced malignancy.


Subject(s)
Kidney Neoplasms , Nephroma, Mesoblastic , Animals , Cell Line, Tumor , Fluorodeoxyglucose F18 , Gallium Radioisotopes/chemistry , Integrins , Kidney Neoplasms/diagnostic imaging , Oligopeptides/chemistry , Oligopeptides/metabolism , Positron-Emission Tomography/methods , Rats , Rats, Inbred F344 , Subrenal Capsule Assay
14.
Pharmaceutics ; 13(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34959383

ABSTRACT

Tumor hypoxia induces angiogenesis, which is required for tumor cell survival. The aminopeptidase N receptor (APN/CD13) is an excellent marker of angiogenesis since it is overexpressed in angiogenic blood vessels and in tumor cells. Asparagine-glycine-arginine (NGR) peptide analogs bind selectively to the APN/CD13 recepto, therefore, they are important vector molecules in the development of a PET radiotracer which is capable of detecting APN-rich tumors. To investigate the effect of glycosylation and pegylation on in-vivo efficacy of an NGR-based radiotracer, two 68Ga-labeled radioglycopeptides were synthesized. A lactosamine derivative was applied to glycosylation of the NGR derivative and PEG4 moiety was used for pegylation. The receptor targeting potential and biodistribution of the radiopeptides were evaluated with in vivo PET imaging studies and ex vivo tissue distribution studies using B16-F10 melanoma tumor-bearing mice. According to these studies, all synthesized radiopeptides were capable of detecting APN expression in B16-F10 melanoma tumor. In addition, lower hepatic uptake, higher tumor-to background (T/M) ratio and prolonged circulation time were observed for the novel [68Ga]-10 radiotracer due to pegylation and glycosylation, resulting in more contrasting PET imaging. These in vivo PET imaging results correlated well with the ex vivo tissue distribution data.

15.
Pharmaceutics ; 13(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073528

ABSTRACT

Radiolabeled peptides possessing an Arg-Gly-Asp (RGD) motif are widely used radiopharmaceuticals for PET imaging of tumor angiogenesis due to their high affinity and selectivity to αvß3 integrin. This receptor is overexpressed in tumor and tumor endothelial cells in the case of numerous cancer cell lines, therefore, it is an excellent biomarker for cancer diagnosis. The galectin-3 protein is also highly expressed in tumor cells and N-acetyllactosamine is a well-established ligand of this receptor. We have developed a synthetic method to prepare a lactosamine-containing radiotracer, namely 68Ga-NODAGA-LacN-E[c(RGDfK)]2, for cancer diagnosis. First, a lactosamine derivative with azido-propyl aglycone was synthetized. Then, NODAGA-NHS was attached to the amino group of this lactosamine derivative. The obtained compound was conjugated to an E[c(RGDfK)]2 peptide with a strain-promoted click reaction. We have accomplished the radiolabeling of the synthetized NODAGA-LacN-E[c(RGDfK)]2 precursor with a positron-emitting 68Ga isotope (radiochemical yield of >95%). The purification of the labeled compound with solid-phase extraction resulted in a radiochemical purity of >99%. Subsequently, the octanol-water partition coefficient (log P) of the labeled complex was determined to be -2.58. In addition, the in vitro stability of 68Ga-NODAGA-LacN-E[c(RGDfK)]2 was investigated and it was found that it was stable under the examined conditions.

16.
Appl Radiat Isot ; 174: 109778, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34004593

ABSTRACT

Formation and growth of metastases require a new vascular network. Angiogenesis plays an essential role in the expansion and progression of most malignancies. A high number of molecular pathways regulate angiogenesis, including vascular endothelial growth factor (VEGF), αvß3 integrin, matrix metalloproteinases (MMPs), or aminopeptidase N. The aim of this study is to involve new, easily accessible peptide sequences into the of neo-angiogenesis in malignant processes. Labelling of these peptide ligands with 68Ga enable PET imaging of neo-vascularization.


Subject(s)
Gallium Radioisotopes/chemistry , Melanoma, Experimental/blood supply , Neovascularization, Pathologic/diagnostic imaging , Peptides/chemistry , Positron-Emission Tomography/methods , Animals , CD13 Antigens/metabolism , Chromatography, High Pressure Liquid/methods , Gallium Radioisotopes/pharmacokinetics , Integrin alphaVbeta3/metabolism , Mice , Mice, Inbred C57BL , Neovascularization, Pathologic/metabolism , Tissue Distribution , Vascular Endothelial Growth Factor Receptor-1/metabolism
17.
Biomed Res Int ; 2021: 6642973, 2021.
Article in English | MEDLINE | ID: mdl-33778075

ABSTRACT

INTRODUCTION: The aminopeptidase N (APN/CD13) receptor plays an important role in the neoangiogenic process and metastatic tumor cell invasion. Clinical and preclinical studies reported that bestatin and actinonin are cytotoxic to APN/CD13-positive tumors and metastases due to their APN/CD13-specific inhibitor properties. Our previous studies have already shown that 68Ga-labeled NGR peptides bind specifically to APN/CD13 expressing tumor cells. The APN/CD13 specificity of 68Ga-NGR radiopharmaceuticals enables the following of the efficacy of antiangiogenic therapy with APN/CD13-specific inhibitors using positron emission tomography (PET). The aim of this in vivo study was to assess the antitumor effect of bestatin and actinonin treatment in subcutaneous transplanted HT1080 and B16-F10 tumor-bearing animal models using 68Ga-NODAGA-c(NGR). MATERIALS AND METHODS: Three days after the inoculation of HT1080 and B16-F10 cells, mice were treated with intraperitoneal injection of bestatin (15 mg/kg) or actinonin (5 mg/kg) for 7 days. On the 5th and 10th day, in vivo PET scans and ex vivo biodistribution studies were performed 90 min after intravenous injection of 5.5 ± 0.2 MBq68Ga-NODAGA-c(NGR). RESULTS: Control-untreated HT1080 and B16-F10 tumors were clearly visualized by the APN/CD13-specific 68Ga-NODAGA-c(NGR) radiopharmaceutical. The western blot analysis also confirmed the strong APN/CD13 positivity in the investigated tumors. We found significantly (p ≤ 0.05) lower radiopharmaceutical uptake after bestatin treatment and higher radiotracer accumulation in the actinonin-treated HT1080 tumors. In contrast, significantly lower (p ≤ 0.01) 68Ga-NODAGA-c(NGR) accumulation was observed in both bestatin- and actinonin-treated B16-F10 melanoma tumors compared to the untreated-control tumors. Bestatin inhibited tumor growth and 68Ga-NODAGA-c(NGR) uptake in both tumor models. CONCLUSION: The bestatin treatment is suitable for suppressing the neoangiogenic process and APN/CD13 expression of experimental HT1080 and B16-F10 tumors; furthermore, 68Ga-NODAGA-c(NGR) is an applicable radiotracer for the in vivo monitoring of the efficacy of the APN/CD13 inhibition-based anticancer therapies.


Subject(s)
Acetates , CD13 Antigens , Gallium Radioisotopes , Heterocyclic Compounds, 1-Ring , Melanoma, Experimental , Molecular Imaging , Neoplasm Proteins , Oligopeptides , Radiopharmaceuticals , Acetates/pharmacokinetics , Acetates/pharmacology , Animals , CD13 Antigens/antagonists & inhibitors , CD13 Antigens/metabolism , Gallium Radioisotopes/pharmacokinetics , Gallium Radioisotopes/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Heterocyclic Compounds, 1-Ring/pharmacology , Humans , Male , Melanoma, Experimental/diagnostic imaging , Melanoma, Experimental/enzymology , Mice , Mice, SCID , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/metabolism , Oligopeptides/pharmacokinetics , Oligopeptides/pharmacology , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology
18.
Int J Pharm ; 589: 119881, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32946975

ABSTRACT

Aminopeptidase N (APN/CD13) plays an important role in neoangiogenic process in malignancies. Our previous studies have already shown that 68Ga-labelled NOTA conjugated asparagine-glycine-arginine peptide (c[KNGRE]-NH2) specifically bind to APN/CD13 expressing tumors. The aim of this study was to evaluate and compare the APN/CD13 specificity of newly synthesized 68Ga-labelled NGR derivatives in vivo by PET/MRI imaging using hepatocellular carcinoma (He/De) and mesoblastic nephroma (Ne/De) tumor models. PET/MRI and ex vivo biodistribution studies were performed 11 ± 1 days after subcutaneous injection of tumor cells and 90 min after intravenous injection of 68Ga-NOTA-c(NGR), 68Ga-NODAGA-c(NGR), 68Ga-NODAGA-c(NGR) (MG1) or 68Ga-NODAGA-c(NGR) (MG2). The APN/CD13 selectivity was confirmed by blocking experiments and the APN/CD13 expression was verified by immunohistochemistry. 68Ga-labelled c(NGR) derivatives were produced with high specific activity and radiochemical purity. In control animals, low radiotracer accumulation was found in abdominal and thoracic organs. Using tumor-bearing animals we found that the 68Ga-NOTA-c(NGR), 68Ga-NODAGA-c(NGR), and 68Ga-NODAGA-c(NGR) (MG1) derivatives showed higher uptake in He/De and Ne/De tumors, than that of the accumulation of 68Ga-NODAGA-c(NGR) (MG2). APN/CD13 is a very promising target in PET imaging, however, the selection of the appropriate 68Ga-labelled NGR-based radiopharmaceutical is critical for the precise detection of tumor neo-angiogenesis and for monitoring the efficacy of anticancer therapy.


Subject(s)
CD13 Antigens , Liver Neoplasms , Animals , CD13 Antigens/metabolism , Cell Line, Tumor , Gallium Radioisotopes , Magnetic Resonance Imaging , Male , Positron-Emission Tomography , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...