Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Imaging Behav ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38049599

ABSTRACT

Nowadays, the limitless availability to the World Wide Web can lead to general Internet misuse and dependence. Currently, smartphone and social media use belong to the most prevalent Internet-related behavioral addiction forms. However, the neurobiological background of these Internet-related behavioral addictions is not sufficiently explored. In this study, these addiction forms were assessed with self-reported questionnaires. Resting-state functional magnetic resonance imaging was acquired for all participants (n = 59, 29 males) to examine functional brain networks. The resting-state networks that were discovered using independent component analysis were analyzed to estimate within network differences. Significant negative associations with social media addiction and smartphone addiction were found in the language network, the lateral visual networks, the auditory network, the sensorimotor network, the executive network and the frontoparietal network. These results suggest that problematic smartphone and social media use are associated with sensory processing and higher cognitive functioning.

2.
J Magn Reson Imaging ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37602529

ABSTRACT

BACKGROUND: Although COVID-19 is primarily an acute respiratory infection, 5%-40% of patients develop late and prolonged symptoms with frequent neurological complaints, known as long COVID syndrome. The presentation of the disease suggests that COVID infection may cause functional and/or morphological central nervous system alterations, but studies published in the literature report contradictory findings. PURPOSE: To investigate the chronic effects of COVID-19 on cerebral grey matter in a group of young patients without comorbidities, with mild course of COVID infection and no medical complaints at the time of examination. STUDY TYPE: Prospective. POPULATION: Thirty-eight young (age = 26.6 ± 5.0 years; male/female = 14/24), adult participants who recovered from mild COVID infection without a history of clinical long COVID and 37 healthy control subjects (age = 25.9 ± 2.8 years; male/female = 14/23). FIELD STRENGTH/SEQUENCE: Three Tesla, 3D T1-weighted magnetization-prepared rapid gradient-echo, 2D T2-weighted turbo spin-echo. ASSESSMENT: MRI-based morphometry and volumetry along with neuropsychological testing and self-assessed questionnaire. STATISTICAL TESTS: Fisher's exact test, Mann-Whitney U-test, and multiple linear regression analyses were used to assess differences between COVID and healthy control groups. P < 0.05 was used as cutoff for significance. RESULTS: In the COVID group, significantly lower bilateral mean cortical thickness (left/right-hemisphere: 2.51 ± 0.06 mm vs. 2.56 ± 0.07 mm, η2 p = 0.102/2.50 ± 0.06 mm vs. 2.54 ± 0.07 mm, η2 p = 0.101), lower subcortical gray matter (57881 ± 3998 mm3 vs. 60470 ± 5211 mm3 , η2 p = 0.100) and lower right olfactory bulb volume (52.28 ± 13.55 mm3 vs. 60.98 ± 15.8 mm3 , η2 p = 0.078) were found. In patients with moderate to severe anosmia, cortical thickness was significantly lower bilaterally, as compared to patients without olfactory function loss (left/right-hemisphere: 2.50 ± 0.06 mm vs. 2.56 ± 0.05 mm, η2 = 0.173/2.49 ± 0.06 mm vs. 2.55 ± 0.05 mm, η2 = 0.189). Using further exploratory analysis, significantly reduced cortical thickness was detected locally in the right lateral orbitofrontal cortex in the COVID group (2.53 ± 0.10 mm vs. 2.60 ± 0.09 mm, η2 p = 0.112). DATA CONCLUSION: Even without any subjective or objective neurological complaints at the time of the MR scan, subjects in the COVID group showed gray matter alterations in cortical thickness and subcortical gray matter volume. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 3.

3.
Sci Rep ; 13(1): 354, 2023 01 07.
Article in English | MEDLINE | ID: mdl-36611073

ABSTRACT

Growing literature indicates that problematic Internet use (PIU) and excessive smartphone use (ESU) are associated with breakdown of functional brain networks. The effects of PIU&ESU on emotional face expression (EFE) recognition are not well understood, however behavioural investigations and fMRI studies of different addiction forms indicated the impairment of this function. The Facial Emotion Recognition Paradigm was used to probe cortico-limbic responses during EFE recognition. Combined fMRI and psychophysiological analysis were implemented to measure EFE-related functional brain changes in PIU&ESU. Self-reported questionnaires were used to assess PIU&ESU. Positive associations were found between the extent of PIU&ESU and functional connections related to emotional cognitive control and social brain networks. Our findings highlight the involvement of social functioning, especially EFE recognition in PIU&ESU. Therefore, we emphasize that besides the brain's executive and reward systems, the social brain network might be the next candidate to be involved in the pathogenesis of PIU&ESU.


Subject(s)
Behavior, Addictive , Facial Recognition , Humans , Smartphone , Facial Expression , Magnetic Resonance Imaging , Internet Use , Behavior, Addictive/psychology , Internet
4.
Neuroimage ; 265: 119812, 2023 01.
Article in English | MEDLINE | ID: mdl-36526104

ABSTRACT

Increasing time spent on the task (i.e., the time-on-task (ToT) effect) often results in mental fatigue. Typical effects of ToT are decreasing levels of task-related motivation and the deterioration of cognitive performance. However, a massive body of research indicates that the detrimental effects can be reversed by extrinsic motivators, for example, providing rewards to fatigued participants. Although several attempts have been made to identify brain areas involved in mental fatigue and related reward processing, the neural correlates are still less understood. In this study, we used the psychomotor vigilance task to induce mental fatigue and blood oxygen-level-dependent functional magnetic resonance imaging to investigate the neural correlates of the ToT effect and the reward effect (i.e., providing extra monetary reward after fatigue induction) in a healthy young sample. Our results were interpreted in a recently proposed neurocognitive framework. The activation of the right middle frontal gyrus, right insula and right anterior cingulate gyrus decreased as fatigue emerged and the cognitive performance dropped. However, after providing an extra reward, the cognitive performance, as well as activation of these areas, increased. Moreover, the activation levels of all of the mentioned areas were negatively associated with reaction times. Our results confirm that the middle frontal gyrus, insula and anterior cingulate cortex play crucial roles in cost-benefit evaluations, a potential background mechanism underlying fatigue, as suggested by the neurocognitive framework.


Subject(s)
Brain , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Brain/physiology , Motivation , Brain Mapping/methods , Reward , Mental Fatigue/diagnostic imaging
5.
PLoS One ; 17(6): e0269979, 2022.
Article in English | MEDLINE | ID: mdl-35749379

ABSTRACT

Internet use disorder (IUD) is generally conceptualized as a fast-growing behavioral addiction. Several structural and functional brain alterations have been revealed in this condition, but previous behavioral studies indicated that language systems may also be impaired. We used a silent word generation task to induce brain activation in Broca's area and other parts of the language system. Blood-oxygen-level-dependent activation analysis and psychophysiological interaction analysis were applied to assess functional brain changes. IUD was measured by the Problematic Internet Use Questionnaire and two additional questions concerning usage time and subjective rating of addiction. According to our key findings, areas strongly related to the default mode network were altered in IUD during the task. Moreover, Broca's area showed altered functional connectivity with other language network and occipital areas in IUD. These findings may address the neural background of decreased verbal fluency performance previously reported in the literature, and we emphasize that beside the brain's reward and inhibitory control systems, the language system is the next candidate to be involved in the pathogenesis of IUD.


Subject(s)
Language , Magnetic Resonance Imaging , Brain Mapping , Broca Area , Internet Use
6.
Front Psychol ; 10: 2217, 2019.
Article in English | MEDLINE | ID: mdl-31611835

ABSTRACT

The automatic visual attentional procession of threatening stimuli over non-threatening cues has long been a question. The so-called classical visual search task (VST) has quickly become the go-to paradigm to investigate this. However, the latest results showed that the confounding results could originate from the shortcomings of the VST. Thus, here we propose a novel approach to the behavioral testing of the threat superiority effect. We conducted two experiments using evolutionary relevant and modern real-life scenes (e.g., forest or street, respectively) as a background to improve ecological validity. Participants had to find different targets in different spatial positions (close to fovea or periphery) using a touch-screen monitor. In Experiment 1 participants had to find the two most often used exemplar of the evolutionary and modern threatening categories (snake and gun, respectively), or neutral objects of the same category. In Experiment 2 we used more exemplars of each category. All images used were controlled for possible confounding low-level visual features such as contrast, frequency, brightness, and image complexity. In Experiment 1, threatening targets were found faster compared to neutral cues irrespective of the evolutionary relevance. However, in Experiment 2, we did not find an advantage for threatening targets over neutral ones. In contrast, the type of background, and spatial position of the target only affected the detection of neutral targets. Our results might indicate that some stimuli indeed have an advantage in visual processing, however, they are not highlighted based on evolutionary relevance of negative valence alone, but rather through different associational mechanisms.

7.
Acta Psychol (Amst) ; 185: 166-171, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29482090

ABSTRACT

Numerous objects and animals could be threatening, and thus, children learn to avoid them early. Spiders and syringes are among the most common targets of fears and phobias of the modern word. However, they are of different origins: while the former is evolutionary relevant, the latter is not. We sought to investigate the underlying mechanisms that make the quick detection of such stimuli possible and enable the impulse to avoid them in the future. The respective categories of threatening and non-threatening targets were similar in shape, while low-level visual features were controlled. Our results showed that children found threatening cues faster, irrespective of the evolutionary age of the cues. However, they detected non-threatening evolutionary targets faster than non-evolutionary ones. We suggest that the underlying mechanism may be different: general feature detection can account for finding evolutionary threatening cues quickly, while specific features detection is more appropriate for modern threatening stimuli.


Subject(s)
Biological Evolution , Cues , Fear/physiology , Reaction Time/physiology , Visual Perception/physiology , Animals , Attention/physiology , Child, Preschool , Fear/psychology , Female , Humans , Learning/physiology , Male , Phobic Disorders/diagnosis , Phobic Disorders/psychology , Spiders
SELECTION OF CITATIONS
SEARCH DETAIL
...