Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Orphanet J Rare Dis ; 19(1): 5, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167464

ABSTRACT

BACKGROUND: The nonclinical as well as clinical development of orphan drugs is difficult, owing to unknown pathophysiology and the absence of animal models. Both, the U.S. Food and Drug Administration (FDA) Guidance and European Medicines Agency (EMA) Guidelines, for orphan drug development describe non-clinical studies, but lack specific information, such as animal species and study design. Against this background, this study aimed to elucidate efficient methods for evaluating nonclinical efficacy based on a review report of orphan drugs approved in Japan. RESULTS: A total of 184 orphan drugs, including 84 anticancer and 100 non-anticancer drugs, approved in Japan from January 2010 to December 2019 were investigated. Some anticancer drugs progressed to clinical development without distinct efficacy data in nonclinical studies. Patient-derived cells have been used for some drugs due to a lack of established cell lines. Cells used for non-clinical studies were devised for drugs indicated for cancers resistant to prior therapies, tumours with specific amino acid mutations in the target molecules, and solid tumours with specific biomarkers. For some non-anticancer drugs, similar disease animal models and normal animals were used for evaluation, since animal models did not exist. Biomarkers have been used specifically for evaluation in normal animals and as endpoints in some clinical trials. CONCLUSIONS: It was possible to evaluate drug efficacy by flexibly designing nonclinical studies according to disease characteristics for potentials orphan drugs. These approaches, which are not described in detail in the EMA Guideline or FDA Guidance, may thus lead to approval.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , United States , Humans , Orphan Drug Production , Drug Approval , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , United States Food and Drug Administration , Biomarkers
3.
BMJ Open ; 13(2): e065476, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36731929

ABSTRACT

INTRODUCTION: In patients with combined lumbar spinal canal stenosis (LSCS), a herniated intervertebral disc (IVD) that compresses the dura mater and nerve roots is surgically treated with discectomy after laminoplasty. However, defects in the IVD after discectomy may lead to inadequate tissue healing and predispose patients to the development of IVD degeneration. Ultrapurified stem cells (rapidly expanding clones (RECs)), combined with an in situ-forming bioresorbable gel (dMD-001), have been developed to fill IVD defects and prevent IVD degeneration after discectomy. We aim to investigate the safety and efficacy of a new treatment method in which a combination of REC and dMD-001 is implanted into the IVD of patients with combined LSCS. METHODS AND ANALYSIS: This is a multicentre, prospective, double-blind randomised controlled trial. Forty-five participants aged 20-75 years diagnosed with combined LSCS will be assessed for eligibility. After performing laminoplasty and discectomy, participants will be randomised 1:1:1 into the combination of REC and dMD-001 (REC-dMD-001) group, the dMD-001 group or the laminoplasty and discectomy alone (control) group. The primary outcomes of the trial will be the safety and effectiveness of the procedure. The effectiveness will be assessed using visual analogue scale scores of back pain and leg pain as well as MRI-based estimations of morphological and compositional quality of the IVD tissue. Secondary outcomes will include self-assessed clinical scores and other MRI-based estimations of compositional quality of the IVD tissue. All evaluations will be performed at baseline and at 1, 4, 12, 24 and 48 weeks after surgery. ETHICS AND DISSEMINATION: This study was approved by the ethics committees of the institutions involved. We plan to conduct dissemination of the outcome data by presenting our data at national and international conferences, as well as through formal publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: jRCT2013210076.


Subject(s)
Intervertebral Disc Degeneration , Mesenchymal Stem Cells , Spinal Stenosis , Humans , Prospective Studies , Bone Marrow , Constriction, Pathologic , Intervertebral Disc Degeneration/surgery , Spinal Stenosis/surgery , Spinal Canal , Treatment Outcome , Lumbar Vertebrae/surgery , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
5.
Contemp Clin Trials Commun ; 23: 100805, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34278043

ABSTRACT

Herniated nucleus pulposus (NP), one of the most common diseases of the spine, is surgically treated by removing the sequestered NP. However, intervertebral disc (IVD) defects may remain after discectomy, leading to inadequate tissue healing and predisposing patients to IVD degeneration. An acellular, bioresorbable, ultra-purified alginate (UPAL) gel (dMD-001) implantation system can be used to fill any IVD defects in order to prevent IVD degeneration after discectomy. This first-in-human pilot study aims to determine the feasibility, safety, and perceived patient response to a combined treatment involving discectomy and UPAL gel implantation for herniated NP. We designed a one-arm, double-centre, open-label, pilot trial. The study started in November 2018 and will run until a sample of 40 suitable participants is established. Patients aged 20-49 years, diagnosed with isolated lumbar IVD herniation and scheduled for discectomy represent suitable candidates. All eligible participants who provide informed consent undergo standard discectomy followed by UPAL gel implantation. The primary outcomes of the trial will be the feasibility and safety of the procedure. Secondary outcomes will include self-assessed clinical scores and magnetic resonance imaging-based measures of morphological and compositional quality of the IVD tissue. Initial outcomes will be published at 24 weeks. Analysis of feasibility and safety will be performed using descriptive statistics. Both intention-to-treat and per-protocol analyses of treatment trends of effectiveness will be conducted.

6.
Nucleic Acid Ther ; 31(2): 114-125, 2021 04.
Article in English | MEDLINE | ID: mdl-33470890

ABSTRACT

This white paper summarizes the current consensus of the Japanese Research Working Group for the ICH S6 & Related Issues (WGS6) on strategies for the nonclinical safety assessment of oligonucleotide-based therapeutics (ONTs), specifically focused on the similarities and differences to biotechnology-derived pharmaceuticals (biopharmaceuticals). ONTs, like biopharmaceuticals, have high species and target specificities. However, ONTs have characteristic off-target effects that clearly differ from those of biopharmaceuticals. The product characteristics of ONTs necessitate specific considerations when planning nonclinical studies. Some ONTs have been approved for human use and many are currently undergoing nonclinical and/or clinical development. However, as ONTs are a rapidly evolving class of drugs, there is still much to learn to achieve optimal strategies for the development of ONTs. There are no formal specific guidelines, so safety assessments of ONTs are principally conducted by referring to published white papers and conventional guidelines for biopharmaceuticals and new chemical entities, and each ONT is assessed on a case-by-case basis. The WGS6 expects that this report will be useful in considering nonclinical safety assessments and developing appropriate guidelines specific for ONTs.


Subject(s)
Biological Products/therapeutic use , Drug Evaluation, Preclinical , Oligonucleotides/therapeutic use , Biological Products/adverse effects , Guidelines as Topic , Humans , Japan , Oligonucleotides/adverse effects
7.
Article in English | MEDLINE | ID: mdl-32340355

ABSTRACT

Genetically edited food utilizes new techniques that may decrease all of the risks associated with genetically modified food, or "GMO" food. Safety and labeling regulations for genetically edited food are still new, and it is challenging for the consumer to differentiate it from conventional food. Although genetically edited food has the potential for reducing the risks associated with the gene introduction process, consumer perceptions toward it are still unclear. The research has compared the regulations governing GMO food and genetically edited food in Japan, Europe, and the United States. We found that the genetically edited food regulations in Japan are the most science-based, in the meaning that genetically edited food products are allowed to be sold without any safety evaluation. Based on the difference among regions, we further studied the potential acceptance level for such products among Japanese consumers, where regulation seemed science-based as policy. To understand the factors that may affect the adoption of genetically edited food among youth in Japan, we utilized the structural equation modeling (SEM) method with 180 surveys of Japanese university students to measure six factors: Knowledge, Attitude Towards Technology, Perceived Benefits, Perceived Risks, Trust, and Willingness to Purchase. The survey was conducted twice with an intervention in the middle to measure the effect of science communication, and we found significant differences when comparing the two datasets. The results of this survey indicate the importance of increasing knowledge and the positive role of science communication in increasing the adoption and trust of biotechnology products, such as genetically edited food.


Subject(s)
Consumer Behavior , Food, Genetically Modified , Health Knowledge, Attitudes, Practice , Adolescent , Female , Food , Humans , Japan , Male
9.
BMC Neurol ; 17(1): 179, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28886699

ABSTRACT

BACKGROUND: Stroke is a leading cause of death and disability, and despite intensive research, few treatment options exist. However, a recent breakthrough in cell therapy is expected to reverse the neurological sequelae of stroke. Although some pioneer studies on the use of cell therapy for treating stroke have been reported, certain problems remain unsolved. Recent studies have demonstrated that bone marrow stromal cells (BMSCs) have therapeutic potential against stroke. We investigated the use of autologous BMSC transplantation as a next-generation cell therapy for treating stroke. In this article, we introduce the protocol of a new clinical trial, the Research on Advanced Intervention using Novel Bone marrOW stem cell (RAINBOW). METHODS/DESIGN: RAINBOW is a phase 1, open-label, uncontrolled, dose-response study, with the primary aim to determine the safety of the autologous BMSC product HUNS001-01 when administered to patients with acute ischemic stroke. Estimated enrollment is 6-10 patients suffering from moderate to severe neurological deficits. Approximately 50 mL of the bone marrow is extracted from the iliac bone of each patient 15 days or later from the onset. BMSCs are cultured with allogeneic human platelet lysate (PL) as a substitute for fetal calf serum and are labeled with superparamagnetic iron oxide for cell tracking using magnetic resonance imaging (MRI). HUNS001-01 is stereotactically administered around the area of infarction in the subacute phase. Each patient will be administered a dose of 20 or 50 million cells. Neurological scoring, MRI for cell tracking, 18F-fuorodeoxyglucose positron emission tomography, and 123I-Iomazenil single-photon emission computed tomography will be performed for 1 year after the administration. DISCUSSION: This is a first-in-human trial for HUNS001-01 to the patients with acute ischemic stroke. We expect that intraparenchymal injection can be a more favorable method for cell delivery to the lesion and improvement of the motor function than intravenous infusion. Moreover, it is expected that the bio-imaging techniques can clarify the therapeutic mechanisms. TRIAL REGISTRATION: The trial was registered at The University Hospital Medical Information Network on February 22, 2017 (UNIN ID: UMIN000026130 ). The findings of this trial will be disseminated to patients and through peer-reviewed publications and international presentations.


Subject(s)
Bone Marrow Transplantation/methods , Brain Ischemia/therapy , Stroke/therapy , Bone Marrow Cells , Female , Humans , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cells/pathology , Research Design
10.
Orphanet J Rare Dis ; 12(1): 143, 2017 08 23.
Article in English | MEDLINE | ID: mdl-28835285

ABSTRACT

BACKGROUND: The unmet medical needs of individuals with very rare diseases are high. The clinical trial designs and evaluation methods used for 'regular' drugs are not applicable in the clinical development of ultra-orphan drugs (<1000 patients) in many cases. In order to improve the clinical development of ultra-orphan drugs, we examined several points regarding the efficient evaluations of drug efficacy and safety that could be conducted even with very small sample sizes, based on the review reports of orphan drugs approved in Japan. RESULTS: The clinical data packages of 43 ultra-orphan drugs approved in Japan from January 2001 to December 2014 were investigated. Japanese clinical trial data were not included in the clinical data package for eight ultra-orphan drugs, and non-Japanese clinical trial data were included for six of these eight drug. Japanese supportive data that included retrospective studies, published literature, clinical research and Japanese survey results were clinical data package attachments in 22 of the 43 ultra-orphan drugs. Multinational trials were conducted for three ultra-orphan drugs. More than two randomized controlled trials (RCTs) were conducted for only 11 of the 43 ultra-orphan drugs. The smaller the number of patients, the greater the proportion of forced titration and optional titration trials were conducted. Extension trials were carried out for enzyme preparations and monoclonal antibodies with high ratio. Post-marketing surveillance of all patients was required in 36 of the 43 ultra-orphan drugs. For ultra-orphan drugs, clinical endpoints were used as the primary efficacy endpoint of the pivotal trial only for two drugs. The control groups in RCTs were classified as follows: placebo groups different dosage groups, and active controls groups. Sample sizes have been determined on the basis of feasibility for some ultra-orphan drugs. We provide "Draft Guidance on the Clinical Development of Ultra-Orphan Drugs" based on this research. CONCLUSIONS: The development of ultra-orphan drugs requires various arrangements regarding evidence collection, data sources and the clinical trial design. We expect that this draft guidance is useful for ultra-orphan drugs developments in future.


Subject(s)
Orphan Drug Production/methods , Humans , Japan , Rare Diseases/drug therapy , Retrospective Studies
11.
Br J Clin Pharmacol ; 82(1): 30-40, 2016 07.
Article in English | MEDLINE | ID: mdl-26987746

ABSTRACT

Seven biosimilar products have been approved in Japan since the March 2009 publication of the 'Guideline for quality, safety and efficacy assurance of biosimilar products' by the Ministry of Health, Labor and Welfare (MHLW). Four years previously, the 'Guideline on similar biological medicinal products' was issued in the European Union (EU), and 13 products as of February 2016 have been approved as biosimilar. The US Food and Drug Administration (FDA) approved the first biosimilar product in the US in March 2015 and final Guidance was issued at the end of April 2015. Over the past decade, the challenges regarding the development of biosimilar products have been discussed extensively. In this article, the data packages of biosimilar products in Japan are compared with those overseas in order to clarify the concepts used by the Japanese regulatory authority, i.e., the Pharmaceuticals and Medical Devices Agency (PMDA). The challenges in the development of biosimilar products in Japan are also addressed.


Subject(s)
Biological Products/standards , Biosimilar Pharmaceuticals/standards , Drug Approval/legislation & jurisprudence , Drug Design , European Union , Guidelines as Topic , Humans , Japan , Legislation, Drug , United States
13.
Biologicals ; 39(5): 289-92, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21917473

ABSTRACT

To share the experience of reviewing clinical data required for the licensing of follow-on biologic products (biosimilar products and similar biotherapeutical products as EU and WHO terminology, respectively) in Japan, the data packages of two follow-on biologics, "Somatropin BS s.c. [Sandoz] (Omnitrope®)" and "Epoetin alfa BS [JCR]", which have been recently approved in Japan according to the "Guidelines for the Quality, Safety and Efficacy Assurance of Follow-on Biologics" published on March 4th 2009, are described. The clinical data package and indication of Somatropin BS/Omnitrope(®) were different in each country. In case of Epoetin alfa BS [JCR], non-clinical and clinical data-package was different from those of erythropoietin biosimilar products approved in EU. Submission of post-marketing surveillance plans for both products was required. Even though there seem to be differences in data requirements by each national regulatory authority, the accumulation of experience will provide the rationale and consensus on how to design the clinical trials for follow-on biologics.


Subject(s)
Drug Evaluation/methods , Erythropoietin , Guidelines as Topic , Human Growth Hormone , Product Surveillance, Postmarketing , Recombinant Proteins , Drug Packaging/legislation & jurisprudence , Drug Packaging/methods , Female , Follow-Up Studies , Humans , Japan , Male
14.
Biologicals ; 39(5): 328-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21890377

ABSTRACT

Recently, WHO, EU, Japan and Canada have published guidelines on biosimilar/follow-on biologics. While there seems to be no significant difference in the general concept in these guidelines, the data to be submitted for product approval are partially different. Differences have been noted in the requirements for comparability studies on stability, prerequisites for reference product, or for the need of comparability exercise for determination of process-related impurities. In Japan, there have been many discussions about the amount and extent of data for approval of follow-on biologics. We try to clarify the scientific background and rational for regulatory pathway of biosimilar/follow-on biologics in Japan in comparison with the guidelines available from WHO, EU and Canada. In this article, we address and discuss the scientific background underlying these differences to facilitate the harmonization of follow-on biologic principles in the guidelines in future.


Subject(s)
Drug Approval/legislation & jurisprudence , Drug Industry/legislation & jurisprudence , Drug Industry/standards , Pharmaceutical Preparations/standards , Guidelines as Topic , Humans , Japan , Product Surveillance, Postmarketing/standards , Product Surveillance, Postmarketing/trends , Quality Control
15.
Biologicals ; 39(3): 171-80, 2011 May.
Article in English | MEDLINE | ID: mdl-21549615

ABSTRACT

The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study.


Subject(s)
Biological Products/chemistry , Monosaccharides/analysis , Amino Sugars/analysis , Amino Sugars/standards , Biological Products/standards , Chromatography, High Pressure Liquid/methods , Chromatography, High Pressure Liquid/standards , Chromatography, Ion Exchange/methods , Chromatography, Ion Exchange/standards , Erythropoietin/chemistry , Excipients , Glycosylation , Monosaccharides/standards , Recombinant Proteins , Reference Standards , Reproducibility of Results , Sialic Acids/analysis , Sialic Acids/standards , Tissue Plasminogen Activator/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...