Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Adv Colloid Interface Sci ; 325: 103108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364360

ABSTRACT

X-ray reflection (XR) and surface grazing incidence X-ray diffraction GIXD) techniques have traditionally been used to evaluate the structure of soft interfacial films. In recent years, the use of synchrotron radiation and two-dimensional detectors has enabled high resolution and high speed measurements of interfacial films, which makes it possible to evaluate more detailed and complex interfacial film structures and adsorption dynamics. In this review, we will provide an overview of recent progress in structural characterization of simple oil/water interfaces, interfacial films of biologically relevant materials, oil/water interfaces for extraction of rare metal ions, and adsorption of nanoparticles. Examples of the application of time-resolved XR methods and surface sensitive techniques such as GISAXS and surface X-ray fluorescence analysis will also be presented.

2.
J Oleo Sci ; 72(10): 911-917, 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37704443

ABSTRACT

In this work, the adsorption dynamics of mixed aqueous solutions of tetraethyleneglycol monoocthyl ether (C8E4) - dodecyltrimethylammonium bromide (DTAB) were studied using sessile bubble surface tensiometry. When C8E4 was added to the DTAB solution, the dynamic surface tension exhibited a unique oscillation decay pattern. In contrast, the addition of DTAB to the C8E4 solution resulted in a simple monotonic decay of the surface tension. The same trend was observed for mixtures of tetradecyltrimethylammonium bromide (TTAB) and DTAB. The occurrence of two distinguishable dynamic surface tension behaviors showed reasonable similarity with the theory of the adsorption kinetics of polymer solutions, where the surface tension oscillation was caused by the delayed desorption of polymers due to the conformational change at the solution surface. We compared the dynamic surface tension of binary surfactant systems and the polymer solution theory, and discussed the origin of surface tension oscillations based on the difference in the surface activity of the surfactants.

3.
Langmuir ; 39(22): 7759-7765, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37224057

ABSTRACT

When liquid alkane droplets are placed on a surfactant solution surface having a proper surface density, alkane molecules penetrated into the surfactant-adsorbed film to form a mixed monolayer. Such a mixed monolayer undergoes a thermal phase transition from two-dimensional liquid to solid monolayers upon cooling when surfactant tail and alkane have similar chain lengths. We applied the total-reflection XAFS spectroscopy and surface quasi-elastic light scattering to the mixed adsorbed film of cetyltrimethylammonium bromide and hexadecane to elucidate the impact on the surface phase transition on the counterion distribution of the mixed monolayer. The EXAFS analysis verified that a higher percentage of counter Br- ions were localized in the Stern layer than in the diffuse double layer in the surface solid film compared to the surface liquid film, which resulted in a reduction in the surface elasticity measured by the SQELS. The finding that the surface phase transition accompanies the change in the counterion distribution will be important to consider the future applications of the colloidal systems, in which the coexistence of a surfactant and alkane molecules is essential, such as foams and emulsions.

4.
Langmuir ; 35(6): 1989-2001, 2019 Feb 12.
Article in English | MEDLINE | ID: mdl-29925234

ABSTRACT

This feature article addresses a variety of unique macroscopic-scale and colloidal-scale interfacial phenomena, such as wetting transitions of oil droplets into molecularly thin films, spontaneous merging and splitting of oil droplets at air-water interfaces, solid monolayer and bilayer formation in mixed cationic surfactant/alkane adsorbed films, switching of foam-film thickness, and oil-in-water emulsion stability. All of these phenomena can be observed using commercial cationic surfactants, liquid alkanes, and water.

5.
Langmuir ; 34(21): 6205-6209, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29742340

ABSTRACT

Penetration of alkane molecules into the adsorbed film of a cationic surfactant gives rise to a surface freezing transition at the alkane-water interface upon cooling. In this paper, we show that surface freezing of hexadecyltrimethylammonium chloride (CTAC) at the tetradecane-water interface stabilizes oil-in-water (OW) emulsions. For concentrations of CTAC near the critical micelle concentration, an OW emulsion coalesced readily above the surface freezing transition whereas the OW emulsion was stable in the surface frozen state. There was a discontinuous change in the stability of the OW emulsion at a temperature very close to the surface phase transition temperature as determined by interfacial tensiometry and ellipsometry on a planar oil-water interface. The mechanical elasticity of the surface frozen layer opposes film drainage and density fluctuations that could lead to rupture and is the most likely cause of the enhanced emulsion stability.

6.
J Phys Chem B ; 119(38): 12436-45, 2015 Sep 24.
Article in English | MEDLINE | ID: mdl-26308905

ABSTRACT

The phase transition and domain formation of the adsorbed film of two kinds of hybrid alcohols (CF3(CF2)m-1(CH2)nOH, FmHnOH), 2-perfluorooctylethanol (F8H2OH) and 2-perfluorohexylhexanol (F6H6OH), as a mixture at the hexane/water interface was investigated by interfacial tensiometry and X-ray reflection. The interfacial tension γ versus total molality m curve of pure F8H2OH has a break point at high concentration, and thus, the mean area per molecule A changes discontinuously at high interfacial pressure π, corresponding to the phase transition between expanded and condensed films. The Fresnel divided reflectivity R/RF versus Qz plots in the expanded state was well-fitted by the domain model for incoherent interference to determine the interfacial coverage, which is the fraction of the interface covered by the condensed phase. This indicates that the expanded film is heterogeneous and consists of a condensed F8H2OH domain, the size of which is larger than the X-ray coherence length (∼5 µm). In the mixed system, the discontinuous change in A at the phase transition point becomes small with increasing the bulk composition of F6H6OH X2 in the mixture, and eventually the A value changes continuously; i.e, the phase transition becomes obscure in X2 ≥ 0.6. This behavior was linked to an increase in interfacial coverage with X2. Furthermore, the R/RF versus Qz plot was fitted by the domain model for coherent interference, suggesting that the size of the domain is smaller than 5 µm. These results are probably due to the reduction of domain line tension by preferential adsorption of F6H6OH at the F8H2OH domain boundary.

7.
J Phys Chem B ; 119(20): 6235-41, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25932500

ABSTRACT

Penetration of alkane molecules into the adsorbed film gives rise to a surface freezing transition of cationic surfactant at the alkane-water interface. To examine the effect of the alkane chain length and counterion on the surface freezing, we employed interfacial tensiometry and ellipsometry to study the interface of cetyltrimethylammonium bromide and cetyltrimethylammonium chloride aqueous solutions against dodecane, tetradecane, hexadecane, and their mixtures. Applying theoretical equations to the experimental results obtained, we found that the alkane molecules that have the same chain length as the surfactant adsorb preferentially into the surface freezing film. Furthermore, we demonstrated that the freezing transition temperature of cationic surfactant adsorbed film was independent of the kind of counterion.

8.
Langmuir ; 31(1): 132-9, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25477297

ABSTRACT

For hexadecane oil droplets at an aqueous-air surface, the surface film in coexistence with the droplets exhibits two-dimensional gaseous (G), liquid (L), or solid (S) behavior depending upon the temperature and concentration of the cationic surfactant dodecyltrimethylammonium bromide. In the G (L) phase, oil droplets are observed to coalesce (fragment) as a function of time. In the coalescence region, droplets coalesce on all length scales, and the final state is a single oil droplet at the aqueous-air surface. The fragmentation regime is complex. Large oil droplets spread as oil films; hole nucleation breaks up this film into much smaller fluctuating and fragmenting or metastable droplets. Metastable droplets are small contact angle spherical caps and do not fluctuate in time; however, they are unstable over long time periods and eventually sink into the bulk water phase. Buoyancy forces provide a counterbalancing force where the net result is that small oil droplets (radius r < 80 µm) are mostly submerged in the bulk aqueous medium with only a small fraction protruding above the liquid surface. In the G phase, a mechanical stability theory for droplets at liquid surfaces indicates that droplet coalesce is primarily driven by surface tension effects. This theory, which only considers spherical cap shaped surface droplets, qualitatively suggests that in the L phase the sinking of metastable surface droplets into the bulk aqueous medium is driven by a negative line tension and a very small spreading coefficient.

9.
J Phys Chem B ; 118(43): 12451-61, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25280128

ABSTRACT

The effect of molecular orientation on the miscibility and structure of the adsorbed film of the 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10diol)-1H,1H,2H,2H-perfluorodecanol (FC10OH) mixture at the hexane/water interface were examined by interfacial tension and X-ray reflectivity measurements. The interfacial tension and X-ray reflectivity at the hexane solution/water interface were measured as a function of total molality m and composition of FC10OH in the mixture X2 under atmospheric pressure at 298.15 K. The interfacial pressure vs mean area per molecule curves showed that two kinds of condensed monolayers (C1 and C2) and multilayer (M) states appeared depending on m and X2. In the pure component systems, it was found that FC10OH forms condensed monolayer in which the molecules orient almost normally to the interface, and FC10diol orients parallel and is densely packed in the condensed monolayer and then piles spontaneously to form multilayer. In the mixed system, the phase diagram of adsorption indicated that FC10OH molecules are richer in C2 than in C1 state. The X-ray reflectivity measurements manifest that the condensed monolayer below X2 = 0.985 is heterogeneous in which the normal- and parallel-oriented domains coexist at the interface (C1 state), and that above X2 = 0.985 seems to be homogeneous with normal molecular orientation (C2 state). The structure of M state depends on those of condensed monolayers, on which the molecules pile spontaneously. The heterogeneous structure in C1 state is compared to that previously observed in the mixed system of FC10diol-FC12OH (1H,1H,2H,2H-perfluorododecanol), where FC12OH has longer fluorocarbon chain length than FC10OH and is discussed in terms of domain line tension.

10.
J Phys Chem B ; 118(6): 1519-26, 2014 Feb 13.
Article in English | MEDLINE | ID: mdl-24447215

ABSTRACT

The surface freezing (SF) of liquid n-heptadecane (C17)-n-octadecane (C18) and 1-perfluorooctyl decane (F8H10)-C18 mixtures were studied by surface tension and external reflection absorption FTIR (ERA-FTIR) measurements. The surface tension versus temperature curves of all pure liquids show a sharp break point at Ts corresponding to a surface liquid (SL)-SF transition. The entropy of surface formation is very negative, indicating a well-ordered structure of the SF layer. The ERA-FTIR spectra in the SF state suggested that the C18 molecules are densely packed in the solid state, while the packing of the hydrocarbon (HC) part of F8H10 is a little looser than the fluorocarbon (FC) part because of the difference in the cross-sectional area. In the C17-C18 mixture, the SL-SF transition was found at all bulk compositions. The estimation of the surface composition suggested that two components are miscible both in SL and SF states. The excess entropy of the surface is almost zero in both states, and thus, it was concluded that the two components are mixed almost ideally at the surface. In the case of the F8H10-C18 system, on the other hand, the SL layer is enriched in F8H10 with lower surface tension than C18 compared to bulk liquid. The surface composition in the SF state is almost zero or unity, indicating that F8H10 and C18 molecules are practically immiscible mainly due to the weak interaction between different components. Furthermore, the negative excess entropy in the SL layer suggests domain formation of F8H10 molecules at the surface.

11.
Adv Colloid Interface Sci ; 206: 186-94, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24007861

ABSTRACT

Alkane droplets on aqueous solutions of surfactants exhibit a first-order wetting transition as the concentration of surfactant is increased. The low-concentration or "partial wetting" state corresponds to an oil lens in equilibrium with a two-dimensional dilute gas of oil and surfactant molecules. The high-concentration or "pseudo-partial wetting" state consists of an oil lens in equilibrium with a mixed monolayer of surfactant and oil. Depending on the combination of surfactant and oil, these mixed monolayers undergo a thermal phase transition upon cooling, either to a frozen mixed monolayer or to an unusual bilayer structure in which the upper leaflet is a solid layer of pure alkane with hexagonal packing and upright chains while the lower leaflet remains a disordered liquid-like mixed monolayer. Additionally, certain long-chain alkanes exhibit a surface freezing transition at the air-oil interface where the top monolayer of oil freezes above its melting point. In this review, we summarize our previous studies and discuss how these wetting and surface freezing transitions influence the line tension of oil lenses from both an experimental and theoretical perspective.

12.
J Phys Chem Lett ; 4(6): 844-8, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-26291344

ABSTRACT

Alkanes on surfactant solutions can form three distinct phases at the air-solution interface, a liquid phase (L), a solid monolayer phase (S1), and a hybrid bilayer phase (S2). Phase coexistence between any two, or all three, of these phases has been observed by Brewster angle microscopy of tetradecane, hexadecane, and their mixtures on solutions of tetradecyltrimethylammonium bromide. The morphologies of the domains depend on the competition between line tension and electrostatic interactions, which are essentially different depending on the pair of phases in contact. Domains of S1 in the L phase are long and thin; however, long, thin domains of L in an S1 phase are not stable but break up into a string of small circular domains. The bilayer S2 domains are always circular, owing to the dominance of line tension on the morphology.

13.
J Phys Chem B ; 116(46): 13739-48, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23110594

ABSTRACT

Novel multilayer formation of fluorocarbon compounds at the hexane/water interface was investigated from the viewpoint of intermolecular interaction and miscibility of molecules in the adsorbed film. The two kinds of mixed systems were employed: 1H,1H,2H,2H-perfluorododecanol (FC12OH)-1H-perfluorodecane (HFC10) (System A) and 1-icosanol (C20OH)-HFC10 (System B). The interfacial tension γ between the hexane solution and water was measured as a function of total concentration m and the composition of HFC10 in the mixture X(2) at 298.15 K under atmospheric pressure. X-ray reflectivity (XR) measurement was performed at BL37XU in SPring-8 as a function of scattering vector Q(z). In both systems, the γ vs m curves except for the pure HFC10 system have a break at low concentrations, which corresponds to the gaseous-condensed monolayer transition for System A and the expanded-condensed monolayer for System B. The remarkable difference between the two systems was that the curves in a limited bulk composition range (0.45 ≤ X(2) ≤ 0.9) of System A show another break at high concentrations close to the solubility limit. The total interfacial density above this break point was around 7-11 µmol m(-2), suggesting the spontaneous molecular piling to form a multilayer. The phase diagrams of adsorption in the condensed monolayer indicated that the film composition of HFC10 is negative in System B but definitely positive above X(2) ≥ 0.45 in System A. This clearly shows that HFC10 molecules are miscible with FC12OH but immiscible with C20OH in the condensed monolayer. Thus, it is likely that the mixing of HFC10 with FC12OH in the condensed monolayer induces multilayer formation. The X-ray reflectivity normalized by Fresnel reflectivity R/R(F) vs Q(z) plot in the condensed monolayer of System A was fitted by a one-slab model with uniform electron density and thickness. The electron density profile was almost the same as that of the pure FC12OH system. The plot in the multilayer, on the other hand, was fitted well by the two-slab model with different electron densities and thicknesses. The electron density profile showed that the multilayer consists of two layers, one of which has slightly higher electron density than the bulk hexane phase and piles on the lower layer with almost the same electron density as the condensed FC12OH monolayer.

14.
J Phys Chem B ; 115(3): 471-7, 2011 Jan 27.
Article in English | MEDLINE | ID: mdl-21192649

ABSTRACT

The surface tension γ of the aqueous solution of 1H,1H,6H,6H-perfluorohexane-1,6-diol (FC6diol) and 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8diol) mixtures was measured as a function of total molality m and composition of FC8diol in the mixture X2 at 293.15 K under atmospheric pressure. The γ vs m curves except at X2 = 0 and 0.05 have a distinct break point due to a phase transition in the adsorbed film. The surface pressure π vs mean area per adsorbed molecule A curves consist of two parts connected by a discontinuous change. The curve was almost vertical just below the phase transition, and the variation of the A value with film composition X(2)(H) was linear corresponding to the fact that FC6diol and FC8diol molecules orient parallel to the surface and are densely packed with the same areas of individual condensed films. Above the phase transition, the A value further decreases to around 0.12-0.19 nm² which is much smaller than the cross-sectional area of the fluorocarbon chain, indicating the multilayer formation at the surface. The phase diagram of adsorption (PDA) in the condensed film showed that the m vs film composition X(2)(H) curve is almost linear and the excess Gibbs energy of adsorption g(HE)/RT is at most 0.01, manifesting the ideal mixing of molecules. This is in contrast to a positive deviation (g(HE)/RT ~0.12) observed in the condensed film of the mixture of 1H,1H,2H,2H-perfluorodecanol (FC10OH) and 1H,1H,2H,2H-perfluorododecanol (FC12OH) with perpendicular molecular orientation. The loss of dispersion interaction between different species having different chain lengths is more appreciable in the perpendicular condensed films and thus leads to less miscibility of FC10OH and FC12OH. In the parallel condensed film, on the other hand, FC6diol and FC8diol molecules can arrange their position as close as possible to minimize the loss of dispersion interaction. The X(2)(H) value in the multilayer is close to unity, and thus, the multilayer consists of almost FC8diol molecules which form a multilayer in the single-component system. Furthermore, the condensed monolayer-multilayer phase transition was accompanied by a large increase in surface density of FC8diol and a small decrease in that of FC6diol, indicating that FC8diol molecules pile preferentially to form a multilayer.

15.
Colloids Surf B Biointerfaces ; 76(2): 571-6, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20097547

ABSTRACT

Effects of a short-chain phospholipid, dihexanoylphosphatidylcholine (DHPC), on the structure and morphology of membrane assemblies of a long-chain phospholipid, dimyristoylphosphatidylcholine (DMPC), were examined by fluorescence spectroscopy, differential scanning calorimetry (DSC), and cryogenic transmission electron microscopy (cryo-TEM). It was found by fluorescence measurements that DHPC affects on the gel and liquid crystalline state of DMPC vesicle membranes in different ways. Further, the result of DSC suggested that, along the transition process from DMPC vesicle to DMPC-DHPC mixed micelle, there are at least three different concentration regions which are characterized by the individual variation pattern of the transition temperature and enthalpy change. The cryo-TEM micrographs demonstrated the formation of thread-like assemblies in the second region and the coexistence of the assemblies and spherical micelles in the third region. Thus, it was concluded that the structural transition from DMPC vesicle to DMPC-DHPC mixed micelle could occur in a stepwise manner through the formation of the thread-like assembly, which cannot be described by the three-stage model of vesicle to micelle transition.


Subject(s)
Dimyristoylphosphatidylcholine/chemistry , Phosphatidylcholines/chemistry , Membranes, Artificial , Micelles , Microscopy, Electron, Transmission , Molecular Structure , Particle Size , Spectrometry, Fluorescence , Surface Properties
16.
J Phys Chem B ; 113(44): 14667-73, 2009 Nov 05.
Article in English | MEDLINE | ID: mdl-19817437

ABSTRACT

The adsorption of 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10diol) at the hexane solution/water interface was investigated by the measurement of interfacial tension gamma as a function of pressure p and concentration m1 and the thermodynamic data analysis. The results obtained were compared with those of 1H,1H,2H,2H-perfluorodecanol (TFC10OH) in order to clarify the effect of molecular orientation on the structure and property of the adsorbed film from the viewpoint of volume change of adsorption. The interfacial pressure pi versus mean area per adsorbed molecule A curve revealed two types of phase transitions among expanded, parallel condensed, and multilayer states. The A value in the condensed state and the transition pressure between the expanded and condensed states were larger for FC10diol than for TFC10OH, which manifests the different molecular orientation that the dispersion interaction between hydrophobic chains is weaker in the parallel orientation of FC10diol than in the perpendicular orientation of TFC10OH. The partial molar volume of FC10diol in the condensed state nu1H.C is slightly larger than that of TFC10OH, although the partial molar volume in the hexane solution is much smaller for FC10diol than for TFC10OH. This supports the view that the fluorocarbon chains of FC10diol remain in their contact with hexane even in the condensed film because of the parallel molecular orientation. The partial molar volume in the nu1H,M was very close to the molar volume of solid FC10diol nu1S and smaller than that of nu1H.C at the condensed-multilayer phase transition, and increased gradually with molecular piling. This substantiates that FC10diol molecules are densely packed in a first few layers just above the phase transition and a little loosely packed in the upper layers of the multilayer with increasing molecular piling. Furthermore, the volume change associated with adsorption from the solid FC10diol Delta(nu)(S) evaluated from the gamma versus p curve under the existence of solid deposit was positive and showed a minimum against concentration for the multilayer state. This is primarily due to the minimum in interfacial density at the solubility limit Gamma1H,S and thus due to the minimum in nu1H,M.


Subject(s)
Fatty Alcohols/chemistry , Fluorocarbons/chemistry , Hexanes/chemistry , Water/chemistry , Adsorption , Pressure , Surface Tension
17.
Langmuir ; 25(17): 9954-9, 2009 Sep 01.
Article in English | MEDLINE | ID: mdl-19705891

ABSTRACT

The miscibility and distribution of Br(-) and BF(4)(-) ions of imidazolium ionic liquid mixtures, 1-hexyl-3-methylimidazolium bromide (HMIMBr) + 1-hexyl-3-methylimidazolium tetrafluoroborate (HMIMBF(4)), at the air/water surface were investigated by surface tensiometry and the total-reflection XAFS (TRXAFS) method. Tensiometry showed that the surface density of BF(4)(-) was much larger than that of Br(-), the adsorbed films of the HMIMBr-HMIMBF(4) mixture were greatly enriched in BF(4)(-) at all surface tensions, and the excess Gibbs energy of adsorption was positive. However, TRXAFS revealed that the Br ions were all in the free-Br state solvated by six water molecules in the mixed adsorbed film. Entropy-originated nonideal mixing, where a kind of segregation of the counterion distribution takes place in the interfacial region, was suggested in the mixture.

18.
J Phys Chem B ; 113(18): 6347-52, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19358544

ABSTRACT

The adsorption behavior of 1,1,2,2,-tetrahydroheptadecafluorodecanol (FC10OH), 1-eicosanol (C20OH), and their mixtures at the hexane solution/water interface is summarized briefly and examined from the viewpoints of interfacial tensions in the presence of domains, domain formation, and the correlation between the phase transition and the miscibility of film forming substances in the adsorbed films. The two-dimensional analogue of the Laplace equation showed that the interfacial tension is always higher in the presence of domains than that in the absence of them. The higher tendency of domain formation of FC10OH compared to C20OH is mainly ascribed to the excess Gibbs energy of mixing of fluorocarbon chains and hydrocarbon solvent being positive and to the interaction energy between domains being more stable against cohesion for FC10OH than for C20OH. The thermodynamic equations derived here suggested the heteroazeotropy in the phase diagram of adsorption and the temperature dependence of interfacial tension at the phase transition points, which are in accord with the experimental findings qualitatively.

19.
J Phys Chem B ; 113(18): 6305-10, 2009 May 07.
Article in English | MEDLINE | ID: mdl-19366243

ABSTRACT

The surface tension of the aqueous solution of 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC(8)diol) was measured as a function of temperature and concentration under atmospheric pressure. The interfacial density and the entropy and energy of adsorption were evaluated and compared to those obtained for the adsorption of 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC(10)diol) at the hexane solution/water interface. The surface tension curves show a break point corresponding to a phase transition of the adsorbed FC(8)diol film. The value of mean area per adsorbed molecule A just below the phase transition indicated the formation of a parallel condensed monolayer, and that above the phase transition suggested the spontaneous formation of a multilayer. The multilayer of FC(8)diol is less compressible and shows a smaller increase in layering with pi compared to FC(10)diol. This is probably because the surface force is repulsive for the hexane/FC/water interface, while it is attractive for the air/FC/water interface. The partial molar entropy change of adsorption is positive in the condensed FC(8)diol film, while it is negative in the condensed FC(10)diol film, which is reasonably explained in terms of the difference in entropy change accompanied by desolvation around the hydrophobic chain. From the viewpoints of the energetic stabilization accompanied by adsorption for the FC(8)diol system, the contribution from the replacement of air/water contact with air/fluorocarbon and fluorocarbon/water contacts and that from the molecular ordering in the adsorbed film is almost equal in case of the condensed monolayer, while in the multilayer the latter is comparatively larger than the former due to the hydrogen bonding between hydroxyl groups and the dispersion interaction among the ordered hydrophobic chains.

20.
Anal Sci ; 24(10): 1279-83, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18845887

ABSTRACT

The adsorbed film of 1-decyl-3-methylimidazolium bromide (DeMIMB) at the air/water interface was investigated employing the surface tension measurement and the x-ray absorption fine structure method under the total reflection condition (TRXAFS). From the surface tension measurement, the surface excess concentrations of ions were determined. From the XAFS measurement, two solvation states of bromide ion were found in the adsorbed film, which were assigned to be "free-Br" and "bound-Br". The hydration number of the former was estimated to be 6 while that of the latter was estimated to be 4. The results based on the XAFS analysis provided significant information on the formation of domains in the adsorbed film; the most conceivable situation is that the adsorbed molecules are definitely not homogeneously dispersed, but domains (islands or clusters) are dispersed in the adsorbed film. A regular and rather tight stacking of immidazolium rings may be formed in the domains.

SELECTION OF CITATIONS
SEARCH DETAIL
...