Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Nutrients ; 15(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38140300

ABSTRACT

The consumption of large amounts of dietary fats and pregnancy are independent factors that can promote changes in gut permeability and the gut microbiome landscape. However, there is limited evidence regarding the impact of pregnancy on the regulation of such parameters in females fed a high-fat diet. Here, gut permeability and microbiome landscape were evaluated in a mouse model of diet-induced obesity in pregnancy. The results show that pregnancy protected against the harmful effects of the consumption of a high-fat diet as a disruptor of gut permeability; thus, there was a two-fold reduction in FITC-dextran passage to the bloodstream compared to non-pregnant mice fed a high-fat diet (p < 0.01). This was accompanied by an increased expression of gut barrier-related transcripts, particularly in the ileum. In addition, the beneficial effect of pregnancy on female mice fed the high-fat diet was accompanied by a reduced presence of bacteria belonging to the genus Clostridia, and by increased Lactobacillus murinus in the gut (p < 0.05). Thus, this study advances the understanding of how pregnancy can act during a short window of time, protecting against the harmful effects of the consumption of a high-fat diet by promoting an increased expression of transcripts encoding proteins involved in the regulation of gut permeability, particularly in the ileum, and promoting changes in the gut microbiome.


Subject(s)
Diet, High-Fat , Obesity , Pregnancy , Mice , Female , Animals , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Obesity/etiology , Obesity/prevention & control , Obesity/metabolism , Dietary Fats/metabolism , Mice, Inbred Strains , Permeability
2.
Life (Basel) ; 13(2)2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36836932

ABSTRACT

BACKGROUND: Photobiomodulation consists of inducing healing by irradiating light. This scoping review investigates the effect of blue light on the healing process. METHODS: The MEDLINE, Web of Science, Scopus, and CINAHL databases were searched. Two reviewers independently examined the search results and extracted data from the included studies. A descriptive analysis was performed. RESULTS: Twenty-two articles were included. Studies were categorized as in vitro/mixed, preclinical, and clinical. The power density used was 10-680 mW/cm2 in most of the in vitro/preclinical studies, the irradiation time ranged from 5 s to 10 min, and different wavelengths and energy densities were used. In clinical studies, the wavelength ranged from 405 to 470 nm, and the energy density varied from 1.5 to 30 J/cm2. CONCLUSIONS: A low energy density (<20 J/cm2) was able to stimulate the different cell types and proteins involved in healing, while a high energy density, 20.6-50 J/cm2, significantly reduced cell proliferation, migration, and metabolism. There is a great variety of device parameters among studies, and this makes it difficult to conclude what the best technical specifications are. Thus, further studies should be performed in order to define the appropriate parameters of light to be used.

3.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36724126

ABSTRACT

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Subject(s)
Adipose Tissue, Brown , Liraglutide , Animals , Mice , Adipose Tissue, Brown/metabolism , Energy Metabolism , Liraglutide/pharmacology , Liraglutide/therapeutic use , Obesity/metabolism , Proteome/metabolism , Succinic Acid/pharmacology , Succinic Acid/metabolism , Succinic Acid/therapeutic use , Thermogenesis , Uncoupling Protein 1/metabolism
4.
Am J Physiol Endocrinol Metab ; 324(2): E154-E166, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36598900

ABSTRACT

Maternal obesity is an important risk factor for obesity, cardiovascular, and metabolic diseases in the offspring. Studies have shown that it leads to hypothalamic inflammation in the progeny, affecting the function of neurons regulating food intake and energy expenditure. In adult mice fed a high-fat diet, one of the hypothalamic abnormalities that contribute to the development of obesity is the damage of the blood-brain barrier (BBB) at the median eminence-arcuate nucleus (ME-ARC) interface; however, how the hypothalamic BBB is affected in the offspring of obese mothers requires further investigation. Here, we used confocal and transmission electron microscopy, transcript expression analysis, glucose tolerance testing, and a cross-fostering intervention to determine the impact of maternal obesity and breastfeeding on BBB integrity at the ME-ARC interface. The offspring of obese mothers were born smaller; conversely, at weaning, they presented larger body mass and glucose intolerance. In addition, maternal obesity-induced structural and functional damage of the offspring's ME-ARC BBB. By a cross-fostering intervention, some of the defects in barrier integrity and metabolism seen during development in an obesogenic diet were recovered. The offspring of obese dams breastfed by lean dams presented a reduction of body mass and glucose intolerance as compared to the offspring continuously exposed to an obesogenic environment during intrauterine and perinatal life; this was accompanied by partial recovery of the anatomical structure of the ME-ARC interface, and by the normalization of transcript expression of genes coding for hypothalamic neurotransmitters involved in energy balance and BBB integrity. Thus, maternal obesity promotes structural and functional damage of the hypothalamic BBB, which is, in part, reverted by lactation by lean mothers.NEW & NOTEWORTHY Maternal dietary habits directly influence offspring health. In this study, we aimed at determining the impact of maternal obesity on BBB integrity. We show that DIO offspring presented a leakier ME-BBB, accompanied by changes in the expression of transcripts encoding for endothelial and tanycytic proteins, as well as of hypothalamic neuropeptides. Breastfeeding in lean dams was sufficient to protect the offspring from ME-BBB disruption, providing a preventive strategy of nutritional intervention during early life.


Subject(s)
Glucose Intolerance , Obesity, Maternal , Humans , Female , Animals , Mice , Pregnancy , Blood-Brain Barrier/metabolism , Median Eminence/metabolism , Obesity, Maternal/metabolism , Mothers , Glucose Intolerance/metabolism , Obesity/metabolism , Hypothalamus/metabolism , Diet, High-Fat/adverse effects , Maternal Nutritional Physiological Phenomena
5.
Biol Res Nurs ; 25(3): 353-366, 2023 07.
Article in English | MEDLINE | ID: mdl-36444640

ABSTRACT

BACKGROUND: Impaired wound healing is a health problem around the world, and the search for a novel product to repair wounded skin is a major topic in the field. GW9508 is a synthetic molecule described as a selective agonist of free fatty acid receptors (FFARs) 1 and 4, and there is evidence of its anti-inflammatory effects on several organs of the body. PURPOSE: Here, we aimed to evaluate the effects of topical GW9508 on wound healing in mice. RESEARCH DESIGN: First, we used bioinformatic methods to determine the expression of FFAR1 and FFAR4 mRNA in the skin from a human cell atlas assembled with single-cell transcriptomes. Next, we employed 6-week-old C57BL6J mice with 2 wounds inflicted in the back. The mice were randomly divided into 2 groups, a control group, which received topical vehicle, and a treatment group, which received GW9508, for 12 days. The wound was monitored by photographic documentation every 2 days, and samples were collected at day 6 and 12 post injury for RT-PCR, western blot and histology analyses. RESULTS: FFAR1 and FFAR4 mRNA are expressed in skin cells in similar amounts to those in other tissues. Topical GW9508 accelerated wound healing and decreased gene expression of IL-10 and metalloproteinase 9 on days 6 and 12 post injury. It increased the quantity of Collagen I and improved the organization of collagen fibres. Conclusions: Our results show that GW9508 could be an attractive drug treatment for wounded skin. Future studies need to be performed to assess the impact of GW9508 in chronic wound models.


Subject(s)
Cicatrix , Methylamines , Wound Healing , Wound Healing/drug effects , Animals , Mice , Methylamines/pharmacology , Propionates , Receptors, G-Protein-Coupled , Skin , Collagen , Anti-Inflammatory Agents/pharmacology , Administration, Topical
6.
Viruses ; 14(12)2022 12 09.
Article in English | MEDLINE | ID: mdl-36560757

ABSTRACT

Because of the interface between coagulation and the immune response, it is expected that COVID-19-associated coagulopathy occurs via activated protein C signaling. The objective was to explore putative changes in the expression of the protein C signaling network in the liver, peripheral blood mononuclear cells, and nasal epithelium of patients with COVID-19. Single-cell RNA-sequencing data from patients with COVID-19 and healthy subjects were obtained from the COVID-19 Cell Atlas database. A functional protein-protein interaction network was constructed for the protein C gene. Patients with COVID-19 showed downregulation of protein C and components of the downstream protein C signaling cascade. The percentage of hepatocytes expressing protein C was lower. Part of the liver cell clusters expressing protein C presented increased expression of ACE2. In PBMC, there was increased ACE2, inflammatory, and pro-coagulation transcripts. In the nasal epithelium, PROC, ACE2, and PROS1 were expressed by the ciliated cell cluster, revealing co-expression of ACE-2 with transcripts encoding proteins belonging to the coagulation and immune system interface. Finally, there was upregulation of coagulation factor 3 transcript in the liver and PBMC. Protein C could play a mechanistic role in the hypercoagulability syndrome affecting patients with severe COVID-19.


Subject(s)
COVID-19 , Thrombophilia , Humans , COVID-19/genetics , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/genetics , Protein C/genetics , Protein C/metabolism , Down-Regulation , Transcriptome , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Peptidyl-Dipeptidase A/metabolism , Thrombophilia/genetics
7.
Front Cardiovasc Med ; 9: 847809, 2022.
Article in English | MEDLINE | ID: mdl-35811697

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) employs angiotensin-converting enzyme 2 (ACE2) as its receptor for cell entrance, and studies have suggested that upon viral binding, ACE2 catalytic activity could be inhibited; therefore, impacting the regulation of the renin-angiotensin-aldosterone system (RAAS). To date, only few studies have evaluated the impact of SARS-CoV-2 infection on the blood levels of the components of the RAAS. The objective of this study was to determine the blood levels of ACE, ACE2, angiotensin-II, angiotensin (1-7), and angiotensin (1-9) at hospital admission and discharge in a group of patients presenting with severe or critical evolution of coronavirus disease 2019 (COVID-19). We showed that ACE, ACE2, angiotensin (1-7), and angiotensin (1-9) were similar in patients with critical and severe COVID-19. However, at admission, angiotensin-II levels were significantly higher in patients presenting as critical, compared to patients presenting with severe COVID-19. We conclude that blood levels of angiotensin-II are increased in hospitalized patients with COVID-19 presenting the critical outcome of the disease. We propose that early measurement of Ang-II could be a useful biomarker for identifying patients at higher risk for extremely severe progression of the disease.

8.
PLoS One ; 17(2): e0263869, 2022.
Article in English | MEDLINE | ID: mdl-35176067

ABSTRACT

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-seq has been used to study mouse and human skins. However, studying pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain high-quality single cells from the pig skin tissue. Here we report a robust method for isolating and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study are valuable for the skin research scientific community.


Subject(s)
Cryopreservation/methods , Single-Cell Analysis/methods , Skin/cytology , Skin/metabolism , Specimen Handling/methods , Transcriptome , Animals , Gene Expression Profiling , Swine , Exome Sequencing
9.
J Neurosci ; 41(48): 10004-10022, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34675088

ABSTRACT

Nescient helix-loop-helix 2 (NHLH2) is a hypothalamic transcription factor that controls the expression of prohormone convertase 1/3, therefore having an impact on the processing of proopiomelanocortin and thus on energy homeostasis. Studies have shown that KO of Nhlh2 results in increased body mass, reduced physical activity, and hypogonadism. In humans, a polymorphism of the NHLH2 gene is associated with obesity; and in Prader-Willi syndrome, a condition characterized by obesity, hypogonadism and behavioral abnormalities, the expression of NHLH2 is reduced. Despite clinical and experimental evidence suggesting that NHLH2 could be a good target for the treatment of obesity, no previous study has evaluated the impact of NHLH2 overexpression in obesity. Here, in mice fed a high-fat diet introduced right after the arcuate nucleus intracerebroventricular injection of a lentivirus that promoted 40% increase in NHLH2, there was prevention of the development of obesity by a mechanism dependent on the reduction of caloric intake. When hypothalamic overexpression of NHLH2 was induced in previously obese mice, the beneficial impact on obesity-associated phenotype was even greater; thus, there was an 80% attenuation in body mass gain, reduced whole-body adiposity, increased brown adipose tissue temperature, reduced hypothalamic inflammation, and reduced liver steatosis. In this setting, the beneficial impact of hypothalamic overexpression of NHLH2 was a result of combined effects on caloric intake, energy expenditure, and physical activity. Moreover, the hypothalamic overexpression of NHLH2 reduced obesity-associated anxiety/depression behavior. Thus, we provide an experimental proof of concept supporting that hypothalamic NHLH2 is a good target for the treatment of obesity.SIGNIFICANCE STATEMENT Obesity is a highly prevalent medical condition that lacks an effective treatment. The main advance provided by this study is the demonstration of the beneficial metabolic and behavioral outcomes resulting from the overexpression of NHLH2 in the hypothalamus. When NHLH2 was overexpressed simultaneously with the introduction of a high-fat diet, there was prevention of obesity by a mechanism dependent on reduced caloric intake. Conversely, when NHLH2 was overexpressed in previously obese mice, there was reduction of the obese phenotype because of a combination of reduced caloric intake, increased physical activity, and increased thermogenesis. In addition, the overexpression of NHLH2 reduced anxiety/depression-like behavior. Thus, NHLH2 emerges as a potential target for the combined treatment of obesity and its associated anxiety/depression-like behavior.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Obesity/metabolism , Animals , Anxiety/metabolism , Body Mass Index , Depression/metabolism , Diet, High-Fat/adverse effects , Female , Male , Mice , Obesity/psychology
10.
J Neuroinflammation ; 18(1): 192, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34465367

ABSTRACT

BACKGROUND: Interleukin-6 (IL6) produced in the context of exercise acts in the hypothalamus reducing obesity-associated inflammation and restoring the control of food intake and energy expenditure. In the hippocampus, some of the beneficial actions of IL6 are attributed to its neurogenesis-inducing properties. However, in the hypothalamus, the putative neurogenic actions of IL6 have never been explored, and its potential to balance energy intake can be an approach to prevent or attenuate obesity. METHODS: Wild-type (WT) and IL6 knockout (KO) mice were employed to study the capacity of IL6 to induce neurogenesis. We used cell labeling with Bromodeoxyuridine (BrdU), immunofluorescence, and real-time PCR to determine the expression of markers of neurogenesis and neurotransmitters. We prepared hypothalamic neuroprogenitor cells from KO that were treated with IL6 in order to provide an ex vivo model to further characterizing the neurogenic actions of IL6 through differentiation assays. In addition, we analyzed single-cell RNA sequencing data and determined the expression of IL6 and IL6 receptor in specific cell types of the murine hypothalamus. RESULTS: IL6 expression in the hypothalamus is low and restricted to microglia and tanycytes, whereas IL6 receptor is expressed in microglia, ependymocytes, endothelial cells, and astrocytes. Exogenous IL6 reduces diet-induced obesity. In outbred mice, obesity-resistance is accompanied by increased expression of IL6 in the hypothalamus. IL6 induces neurogenesis-related gene expression in the hypothalamus and in neuroprogenitor cells, both from WT as well as from KO mice. CONCLUSION: IL6 induces neurogenesis-related gene expression in the hypothalamus of WT mice. In KO mice, the neurogenic actions of IL6 are preserved; however, the appearance of new fully differentiated proopiomelanocortin (POMC) and neuropeptide Y (NPY) neurons is either delayed or disturbed.


Subject(s)
Hypothalamus/metabolism , Interleukin-6/genetics , Neurogenesis/genetics , Neurons/metabolism , Obesity/genetics , Animals , Energy Metabolism/physiology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Hypothalamus/drug effects , Interleukin-6/metabolism , Interleukin-6/pharmacology , Male , Mice , Mice, Knockout , Microglia/drug effects , Microglia/metabolism , Neurogenesis/drug effects , Neurons/drug effects , Obesity/metabolism , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism
11.
Front Vet Sci ; 8: 651202, 2021.
Article in English | MEDLINE | ID: mdl-34368269

ABSTRACT

Currently, experimental animals are widely used in biological and medical research. However, the scientific community has raised several bioethical concerns, such as the number of animals required to achieve reproducible and statistically relevant results. These concerns involve aspects related to pain, discomfort, and unwanted animal loss. Retrospectively, we compare two different approaches for anesthesia dosage: a mobile app for dose calculation and a standard dose calculation. A total of 939 C57BL/6J and Swiss mice were analyzed. We collected data on intraoperative and anesthesia-related mortality as described in electronic or physical handwritten records. Our results showed that the mobile app approach significantly reduces anesthetic-related deaths upon using doses of ketamine and xylazine. The results suggest that anesthesia-related mortality can be minimized even more using information technology approaches, helping to solve an old but transversal challenge for researchers working with experimental mice. The mobile app is a free and open code which could be implemented worldwide as an essential requirement for all anesthetic procedures in mice using xylazine and ketamine combination. As an open code app, the Labinsane initiative could also represent the starting point to unify and validate other anesthetic procedures in different species and strains.

12.
Viruses ; 13(2)2021 02 16.
Article in English | MEDLINE | ID: mdl-33669276

ABSTRACT

Background: Coronavirus disease 19 (COVID-19) can develop into a severe respiratory syndrome that results in up to 40% mortality. Acute lung inflammatory edema is a major pathological finding in autopsies explaining O2 diffusion failure and hypoxemia. Only dexamethasone has been shown to reduce mortality in severe cases, further supporting a role for inflammation in disease severity. SARS-CoV-2 enters cells employing angiotensin-converting enzyme 2 (ACE2) as a receptor, which is highly expressed in lung alveolar cells. ACE2 is one of the components of the cellular machinery that inactivates the potent inflammatory agent bradykinin, and SARS-CoV-2 infection could interfere with the catalytic activity of ACE2, leading to the accumulation of bradykinin. Methods: In this case control study, we tested two pharmacological inhibitors of the kinin-kallikrein system that are currently approved for the treatment of hereditary angioedema, icatibant, and inhibitor of C1 esterase/kallikrein, in a group of 30 patients with severe COVID-19. Results: Neither icatibant nor inhibitor of C1 esterase/kallikrein resulted in changes in time to clinical improvement. However, both compounds were safe and promoted the significant improvement of lung computed tomography scores and increased blood eosinophils, which are indicators of disease recovery. Conclusions: In this small cohort, we found evidence for safety and a beneficial role of pharmacological inhibition of the kinin-kallikrein system in two markers that indicate improved disease recovery.


Subject(s)
Bradykinin/analogs & derivatives , COVID-19 Drug Treatment , Complement C1 Inhibitor Protein/therapeutic use , Kallikrein-Kinin System/drug effects , Kallikreins/antagonists & inhibitors , Adult , Aged , Bradykinin/therapeutic use , Case-Control Studies , Drug Repositioning , Female , Humans , Lung/drug effects , Lung/pathology , Male , Middle Aged
13.
Trials ; 22(1): 71, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33472675

ABSTRACT

BACKGROUND: SARS-CoV-2, the virus that causes COVID-19, enters the cells through a mechanism dependent on its binding to angiotensin-converting enzyme 2 (ACE2), a protein highly expressed in the lungs. The putative viral-induced inhibition of ACE2 could result in the defective degradation of bradykinin, a potent inflammatory substance. We hypothesize that increased bradykinin in the lungs is an important mechanism driving the development of pneumonia and respiratory failure in COVID-19. METHODS: This is a phase II, single-center, three-armed parallel-group, open-label, active control superiority randomized clinical trial. One hundred eighty eligible patients will be randomly assigned in a 1:1:1 ratio to receive either the inhibitor of C1e/kallikrein 20 U/kg intravenously on day 1 and day 4 plus standard care; or icatibant 30 mg subcutaneously, three doses/day for 4 days plus standard care; or standard care alone, as recommended in the clinical trials published to date, which includes supplemental oxygen, non-invasive and invasive ventilation, antibiotic agents, anti-inflammatory agents, prophylactic antithrombotic therapy, vasopressor support, and renal replacement therapy. DISCUSSION: Accumulation of bradykinin in the lungs is a common side effect of ACE inhibitors leading to cough. In animal models, the inactivation of ACE2 leads to severe acute pneumonitis in response to lipopolysaccharide (LPS), and the inhibition of bradykinin almost completely restores the lung structure. We believe that inhibition of bradykinin in severe COVID-19 patients could reduce the lung inflammatory response, impacting positively on the severity of disease and mortality rates. TRIAL REGISTRATION: Brazilian Clinical Trials Registry Universal Trial Number (UTN) U1111-1250-1843. Registered on May/5/2020.


Subject(s)
Bradykinin/analogs & derivatives , COVID-19 Drug Treatment , Complement C1 Inhibitor Protein/administration & dosage , Respiratory Insufficiency/drug therapy , Adult , Angiotensin-Converting Enzyme 2/metabolism , Bradykinin/administration & dosage , Bradykinin/adverse effects , Bradykinin/antagonists & inhibitors , Bradykinin/immunology , Bradykinin/metabolism , Bradykinin B2 Receptor Antagonists/administration & dosage , Bradykinin B2 Receptor Antagonists/adverse effects , Brazil , COVID-19/complications , COVID-19/immunology , COVID-19/virology , Clinical Trials, Phase II as Topic , Complement C1 Inhibitor Protein/adverse effects , Drug Administration Schedule , Drug Therapy, Combination/adverse effects , Drug Therapy, Combination/methods , Humans , Injections, Intravenous , Injections, Subcutaneous , Kallikreins/antagonists & inhibitors , Kallikreins/metabolism , Randomized Controlled Trials as Topic , Respiratory Insufficiency/immunology , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , SARS-CoV-2/pathogenicity , Severity of Illness Index , Treatment Outcome
14.
Allergy Asthma Clin Immunol ; 17(1): 5, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407838

ABSTRACT

BACKGROUND: Severe coronavirus disease-19 (COVID-19) presents with progressive dyspnea, which results from acute lung inflammatory edema leading to hypoxia. As with other infectious diseases that affect the respiratory tract, asthma has been cited as a potential risk factor for severe COVID-19. However, conflicting results have been published over the last few months and the putative association between these two diseases is still unproven. METHODS: Here, we systematically reviewed all reports on COVID-19 published since its emergence in December 2019 to June 30, 2020, looking into the description of asthma as a premorbid condition, which could indicate its potential involvement in disease progression. RESULTS: We found 372 articles describing the underlying diseases of 161,271 patients diagnosed with COVID-19. Asthma was reported as a premorbid condition in only 2623 patients accounting for 1.6% of all patients. CONCLUSIONS: As the global prevalence of asthma is 4.4%, we conclude that either asthma is not a premorbid condition that contributes to the development of COVID-19 or clinicians and researchers are not accurately describing the premorbidities in COVID-19 patients.

15.
Sci Rep ; 10(1): 19522, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177594

ABSTRACT

SARS-CoV-2, the pathogenic agent of COVID-19, employs angiotensin converting enzyme-2 (ACE2) as its cell entry receptor. Clinical data reveal that in severe COVID-19, SARS-CoV-2 infects the lung, leading to a frequently lethal triad of respiratory insufficiency, acute cardiovascular failure, and coagulopathy. Physiologically, ACE2 plays a role in the regulation of three systems that could potentially be involved in the pathogenesis of severe COVID-19: the kinin-kallikrein system, resulting in acute lung inflammatory edema; the renin-angiotensin system, promoting cardiovascular instability; and the coagulation system, leading to thromboembolism. Here we assembled a healthy human lung cell atlas meta-analysis with ~ 130,000 public single-cell transcriptomes and show that key elements of the bradykinin, angiotensin and coagulation systems are co-expressed with ACE2 in alveolar cells and associated with their differentiation dynamics, which could explain how changes in ACE2 promoted by SARS-CoV-2 cell entry result in the development of the three most severe clinical components of COVID-19.


Subject(s)
Betacoronavirus/genetics , Blood Coagulation , Gene Expression Profiling , Kallikrein-Kinin System/genetics , Peptidyl-Dipeptidase A/genetics , Pulmonary Alveoli/cytology , Renin-Angiotensin System/genetics , Angiotensin-Converting Enzyme 2 , Betacoronavirus/enzymology , Betacoronavirus/physiology , Humans , Pulmonary Alveoli/metabolism , SARS-CoV-2 , Serine Endopeptidases/genetics
16.
Bioact Mater ; 5(4): 949-962, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32671290

ABSTRACT

Plasma fibrinogen (F1) and fibronectin (pFN) polymerize to form a fibrin clot that is both a hemostatic and provisional matrix for wound healing. About 90% of plasma F1 has a homodimeric pair of γ chains (γγF1), and 10% has a heterodimeric pair of γ and more acidic γ' chains (γγ'F1). We have synthesized a novel fibrin matrix exclusively from a 1:1 (molar ratio) complex of γγ'F1 and pFN in the presence of highly active thrombin and recombinant Factor XIII (rFXIIIa). In this matrix, the fibrin nanofibers were decorated with pFN nanoclusters (termed γγ'F1:pFN fibrin). In contrast, fibrin made from 1:1 mixture of γγF1 and pFN formed a sporadic distribution of "pFN droplets" (termed γγF1+pFN fibrin). The γγ'F1:pFN fibrin enhanced the adhesion of primary human umbilical vein endothelium cells (HUVECs) relative to the γγF1+FN fibrin. Three dimensional (3D) culturing showed that the γγ'F1:pFN complex fibrin matrix enhanced the proliferation of both HUVECs and primary human fibroblasts. HUVECs in the 3D γγ'F1:pFN fibrin exhibited a starkly enhanced vascular morphogenesis while an apoptotic growth profile was observed in the γγF1+pFN fibrin. Relative to γγF1+pFN fibrin, mouse dermal wounds that were sealed by γγ'F1:pFN fibrin exhibited accelerated and enhanced healing. This study suggests that a 3D pFN presentation on a fibrin matrix promotes wound healing.

17.
J Tissue Eng Regen Med ; 14(6): 807-818, 2020 06.
Article in English | MEDLINE | ID: mdl-32330363

ABSTRACT

Mounting evidence showing that local nitric oxide (NO) delivery may significantly improve the wound healing process has stimulated the development of wound dressings capable of releasing NO topically. Herein, we describe the preparation of a self-expandable NO-releasing hydrolyzed collagen sponge (CS), charged with the endogenously found NO donor, S-nitrosoglutathione (GSNO). We show that cold pressed and GSNO-charged CS (CS/GSNO) undergo self-expansion to its original 3D shape upon water absorption to a swelling degree of 2,300 wt%, triggering the release of free NO. Topical application of compressed CS/GSNO on wounds in an animal model showed that exudate absorption by CS/GSNO leads to the release of higher NO doses during the inflammatory phase and progressively lower NO doses at later stages of the healing process. Moreover, treated animals showed significant increase in the mRNA expression levels of monocyte chemoattractant protein-1 (MCP-1), murine macrophage marker (F4/80), transforming growth factor beta (TGF-ß), stromal cell-derived factor 1 (SDF-1), insulin-like growth factor-1 (IGF-1), nitric oxide synthase(iNOS), and matrix metalloproteinase(MMP-9). Cluster differentiation 31 (CD31), vascular endothelial growth factor (VEGF), and F4/80 were measured on Days 7 and 12 by immunohistochemistry in the cicatricial tissue. These results indicate that the topical delivery of NO enhances the migration and infiltration of leucocytes, macrophages, and keratinocytes to the wounded tissue, as well as the neovascularization and collagen deposition, which are correlated with an accelerated wound closure. Thus, self-expandable CS/GSNO may represent a novel biocompatible and active wound dress for the topical delivery of NO on wounds.


Subject(s)
Collagen , Nitric Oxide , S-Nitrosoglutathione , Wound Healing/drug effects , Wounds and Injuries , Animals , Collagen/chemistry , Collagen/pharmacology , Disease Models, Animal , Drug Implants/chemistry , Drug Implants/pharmacokinetics , Drug Implants/pharmacology , Male , Mice , Nitric Oxide/chemistry , Nitric Oxide/pharmacokinetics , Nitric Oxide/pharmacology , S-Nitrosoglutathione/chemistry , S-Nitrosoglutathione/pharmacokinetics , S-Nitrosoglutathione/pharmacology , Wounds and Injuries/drug therapy , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
18.
Biomed Res Int ; 2019: 1365210, 2019.
Article in English | MEDLINE | ID: mdl-31534953

ABSTRACT

Interleukin-6 (IL-6) is a unique cytokine that can play both pro- and anti-inflammatory roles depending on the anatomical site and conditions under which it has been induced. Specific neurons of the hypothalamus provide important signals to control food intake and energy expenditure. In individuals with obesity, a microglia-dependent inflammatory response damages the neural circuits responsible for maintaining whole-body energy homeostasis, resulting in a positive energy balance. However, little is known about the role of IL-6 in the regulation of hypothalamic microglia. In this systematic review, we asked what types of conditions and stimuli could modulate microglial IL-6 expression in murine model. We searched the PubMed and Web of Science databases and analyzed 13 articles that evaluated diverse contexts and study models focused on IL-6 expression and microglia activation, including the effects of stress, hypoxia, infection, neonatal overfeeding and nicotine exposure, lipopolysaccharide stimulus, hormones, exercise protocols, and aging. The results presented in this review emphasized the role of "injury-like" stimuli, under which IL-6 acts as a proinflammatory cytokine, concomitant with marked microglial activation, which drive hypothalamic neuroinflammation. Emerging evidence indicates an important correlation of basal IL-6 levels and microglial function with the maintenance of hypothalamic homeostasis. Advances in our understanding of these different contexts will lead to the development of more specific pharmacological approaches for the management of acute and chronic conditions, like obesity and metabolic diseases, without disturbing the homeostatic functions of IL-6 and microglia in the hypothalamus.


Subject(s)
Gene Expression Regulation/immunology , Hypothalamus/immunology , Interleukin-6/immunology , Metabolic Diseases/immunology , Microglia/immunology , Obesity/immunology , Animals , Humans , Hypothalamus/pathology , Metabolic Diseases/pathology , Mice , Microglia/pathology , Obesity/pathology
19.
Biol Res Nurs ; 21(4): 420-430, 2019 07.
Article in English | MEDLINE | ID: mdl-31043061

ABSTRACT

Wound healing is severely affected in hyperglycemia and other metabolic conditions. Finding new therapeutic approaches that accelerate wound healing and improve the quality of the scar may reduce the morbidity commonly associated with skin lesions in diabetes. This study evaluated the effect of topical topiramate (TPM) on wound healing in C57 mice. Streptozotocin-induced hyperglycemic mice were subjected to a wound on the back and randomly allocated for treatment with either vehicle or topical TPM cream (2%) once a day for 14 days. Polymerase chain reaction, Western blotting, and microscopy were performed for the analysis. TPM improved wound healing (complete resolution at Day 10, 98% ± 5 for TPM vs. 81% ± 28 for vehicle), increased organization and deposition of collagen Type I, and enhanced the quality of the scars as determined by microscopy. In addition, TPM modulated the expression of cytokines and proteins of the insulin-signaling pathway: In early wound-healing stages, expression of interleukin-10, an anti-inflammatory marker, increased, whereas at the late phase, the pro-inflammatory markers tumor necrosis factor-α and monocyte chemoattractant protein-1 increased and there was increased expression of a vascular endothelial growth factor. Proteins of the insulin-signaling pathway were stimulated in the late wound-healing phase. Topical TPM improves the quality of wound healing in an animal model of hyperglycemia. The effect of TPM is accompanied by modulation of inflammatory and growth factors and proteins of the insulin-signaling pathway. Therefore, topical TPM presents as a potential therapeutic agent in skin wounds in patients with hyperglycemia.


Subject(s)
Disease Models, Animal , Hyperglycemia/drug therapy , Hypoglycemic Agents/pharmacology , Topiramate/pharmacology , Wound Healing/drug effects , Animals , Hypoglycemic Agents/administration & dosage , Mice , Random Allocation , Skin/drug effects , Topiramate/administration & dosage
20.
Front Neurosci ; 12: 846, 2018.
Article in English | MEDLINE | ID: mdl-30524228

ABSTRACT

Emerging data demonstrate that microglia activation plays a pivotal role in the development of hypothalamic inflammation in obesity. Early after the introduction of a high-fat diet, hypothalamic microglia undergo morphological, and functional changes in response to excessive dietary saturated fats. Initially the resident microglia are affected; however, as diet-induced obesity persists, bone marrow-derived myeloid cells gradually replace resident microglia. Genetic and pharmacological approaches aimed at dampening the inflammatory activity in the hypothalamus of experimental models of obesity have proven beneficial to correct the obese phenotype and improve metabolic abnormalities commonly associated with obesity. These approaches provide an experimental proof-of-concept that hypothalamic inflammation is central to the pathophysiology of obesity; understanding the details of the roles played by microglia in this process may help the development of preventive and therapeutic advances in the field. In this review, we discuss the potential mechanisms underlying hypothalamic microglial activation in high-fat induced obesity.

SELECTION OF CITATIONS
SEARCH DETAIL
...