Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virus Res ; 276: 197805, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31712123

ABSTRACT

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. Natural products show exceptional structural diversity and they have played a vital role in drug research. Several investigations focused on applied structural modification of natural products to improved metabolic stability, solubility and biological actions them. Quercetin is a flavonoid that presents several biological activities, including anti-hRSV role. Some works criticize the pharmacological use of Quercetin because it has low solubility and low specificity. In this sense, we acetylated Quercetin structure and we used in vitro and in silico assays to compare anti-hRSV function between Quercetin (Q0) and its derivative molecule (Q1). Q1 shows lower cytotoxic effect than Q0 on HEp-2 cells. In addition, Q1 was more efficient than Q0 to protect HEp-2 cells infected with different multiplicity of infection (0.1-1 MOI). The virucidal effects of Q0 and Q1 suggest interaction between these molecules and viral particle. Dynamic molecular results suggest that Q0 and Q1 may interact with F-protein on hRSV surface in an important region to adhesion and viral infection. Q1 interaction with F-protein showed ΔG= -14.22 kcal/mol and it was more stable than Q0. Additional, MTT and plate assays confirmed that virucidal Q1 effects occurs during adhesion step of cycle hRSV replication. In conclusion, acetylation improves anti-hRSV Quercetin effects because Quercetin pentaacetate could interact with F-protein with lower binding energy and better stability to block viral adhesion. These results show alternative anti-hRSV strategy and contribute to drug discovery and development.


Subject(s)
Antiviral Agents/pharmacology , Epithelial Cells/drug effects , Quercetin/analogs & derivatives , Respiratory Syncytial Virus, Human/drug effects , Virus Attachment/drug effects , Acetylation , Cell Line , Epithelial Cells/virology , Humans , Molecular Dynamics Simulation , Quercetin/pharmacology , Respiratory Syncytial Virus, Human/physiology , Viral Fusion Proteins/metabolism , Virus Replication/drug effects
2.
Virus Res ; 251: 68-77, 2018 06 02.
Article in English | MEDLINE | ID: mdl-29621602

ABSTRACT

Human respiratory syncytial virus (hRSV) is one of the main etiological agents of diseases of the lower respiratory tract, and is often responsible for the hospitalization of children and the elderly. To date, treatments are only palliative and there is no vaccine available. The airways of patients infected with hRSV exhibit intense neutrophil infiltration, which is responsible for the release of neutrophil extracellular traps (NETs). These are extracellular structures consisting of DNA associated with intracellular proteins, and are efficient in capturing and eliminating various microorganisms, including some viruses. hRSV induces the release of NETs into the lung tissue of infected individuals; however, the pathophysiological consequences of this event have not been elucidated. The objective of this study was to utilize in vitro and in silico assays to investigate the impact of NETs on hRSV infection. NETs, generated by neutrophils stimulated with phorbol myristate acetate (PMA), displayed long fragments of DNA and an electrophoretic profile suggestive of the presence of proteins that are classically associated with these structures (elastase, cathepsin G, myeloperoxidase, and histones). The presence of NETs (>2 µg/ml) in HEp-2 cell culture medium resulted in cellular cytotoxicity of less than 50%. Pre-incubation (1 h) of viral particles (multiplicity of infection (MOI) values of 0.1, 0.5, and 1.0) with NETs (2-32 µg/ml) resulted in cellular protection from virus-induced death of HEp-2 cells. Concurrently, there was a reduction in the formation of syncytia, which is related to decreased viral spread in infected tissue. Results from western blotting and molecular docking, suggest interactions between F protein of the hRSV viral envelope and BPI (bactericidal permeability-increasing protein), a microbicidal member of NETs. Interactions occurred at sites important for the neutralization and coordination of the hRSV infection/replication process. Our results showed that the presence of NETs decreases hRSV-induced cellular damage, possibly by directly affecting viral particle capture and/or interfering with the fusion activity of the F protein. These findings broaden the understanding of the role of NETs during hRSV infection.


Subject(s)
Extracellular Traps/metabolism , Host-Pathogen Interactions , Neutrophils/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Fusion Proteins/metabolism , Cells, Cultured , DNA/analysis , DNA-Binding Proteins/analysis , Epithelial Cells/virology , Extracellular Traps/chemistry , Humans
3.
Biochem Biophys Res Commun ; 475(4): 350-5, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27233609

ABSTRACT

The arginine repressor (ArgR) regulates arginine biosynthesis in a number of microorganisms and consists of two domains interlinked by a short peptide; the N-terminal domain is involved in DNA binding and the C-terminal domain binds arginine and forms a hexamer made-up of a dimer of trimers. The crystal structure of the C-terminal domain of ArgR from the pathogenic Corynebacterium pseudotuberculosis determined at 1.9 Å resolution contains a tightly bound tyrosine at the arginine-binding site indicating hitherto unobserved promiscuity. Structural analysis of the binding pocket displays clear molecular adaptations to accommodate tyrosine binding suggesting the possible existence of an alternative regulatory process in this pathogenic bacterium.


Subject(s)
Bacterial Proteins/chemistry , Corynebacterium pseudotuberculosis/chemistry , Repressor Proteins/chemistry , Amino Acid Sequence , Arginine/metabolism , Bacterial Proteins/metabolism , Binding Sites , Corynebacterium Infections/microbiology , Corynebacterium pseudotuberculosis/metabolism , Crystallography, X-Ray , Humans , Models, Molecular , Protein Domains , Repressor Proteins/metabolism , Substrate Specificity , Tyrosine/metabolism
4.
Int J Biol Macromol ; 85: 40-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26718867

ABSTRACT

Human Respiratory Syncytial Virus is one of the major causes of acute respiratory infections in children, causing bronchiolitis and pneumonia. Non-Structural Protein 1 (NS1) is involved in immune system evasion, a process that contributes to the success of hRSV replication. This protein can act by inhibiting or neutralizing several steps of interferon pathway, as well as by silencing the hRSV ribonucleoproteic complex. There is evidence that quercetin can reduce the infection and/or replication of several viruses, including RSV. The aims of this study include the expression and purification of the NS1 protein besides experimental and computational assays of the NS1-quercetin interaction. CD analysis showed that NS1 secondary structure composition is 30% alpha-helix, 21% beta-sheet, 23% turn and 26% random coils. The melting temperature obtained through DSC analysis was around 56°C. FRET analysis showed a distance of approximately 19Å between the NS1 and quercetin. Fluorescence titration results showed that the dissociation constant of the NS1-quercetin interaction was around 10(-6)M. In thermodynamic analysis, the enthalpy and entropy balanced forces indicated that the NS1-quercetin interaction presented both hydrophobic and electrostatic contributions. The computational results from the molecular modeling for NS1 structure and molecular docking regarding its interaction with quercetin corroborate the experimental data.


Subject(s)
Models, Molecular , Molecular Conformation , Quercetin/chemistry , Respiratory Syncytial Virus, Human , Viral Nonstructural Proteins/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Secondary , Recombinant Proteins , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...