Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 605(7909): 244-247, 2022 05.
Article in English | MEDLINE | ID: mdl-35546195

ABSTRACT

Bright quasars, powered by accretion onto billion-solar-mass black holes, already existed at the epoch of reionization, when the Universe was 0.5-1 billion years old1. How these black holes formed in such a short time is the subject of debate, particularly as they lie above the correlation between black-hole mass and galaxy dynamical mass2,3 in the local Universe. What slowed down black-hole growth, leading towards the symbiotic growth observed in the local Universe, and when this process started, has hitherto not been known, although black-hole feedback is a likely driver4. Here we report optical and near-infrared observations of a sample of quasars at redshifts 5.8 ≲ z ≲ 6.6. About half of the quasar spectra reveal broad, blueshifted absorption line troughs, tracing black-hole-driven winds with extreme outflow velocities, up to 17% of the speed of light. The fraction of quasars with such outflow winds at z ≳ 5.8 is ≈2.4 times higher than at z ≈ 2-4. We infer that outflows at z ≳ 5.8 inject large amounts of energy into the interstellar medium and suppress nuclear gas accretion, slowing down black-hole growth. The outflow phase may then mark the beginning of substantial black-hole feedback. The red optical colours of outflow quasars at z ≳ 5.8 indeed suggest that these systems are dusty and may be caught during an initial quenching phase of obscured accretion5.

2.
Science ; 345(6192): 64-8, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24994647

ABSTRACT

Supermassive black holes in the nuclei of active galaxies expel large amounts of matter through powerful winds of ionized gas. The archetypal active galaxy NGC 5548 has been studied for decades, and high-resolution x-ray and ultraviolet (UV) observations have previously shown a persistent ionized outflow. An observing campaign in 2013 with six space observatories shows the nucleus to be obscured by a long-lasting, clumpy stream of ionized gas not seen before. It blocks 90% of the soft x-ray emission and causes simultaneous deep, broad UV absorption troughs. The outflow velocities of this gas are up to five times faster than those in the persistent outflow, and, at a distance of only a few light days from the nucleus, it may likely originate from the accretion disk.

3.
Astrophys J ; 533(2): L79-L82, 2000 Apr 20.
Article in English | MEDLINE | ID: mdl-10770695

ABSTRACT

We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

SELECTION OF CITATIONS
SEARCH DETAIL
...