Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(17): 24986-25013, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460040

ABSTRACT

Environmental nuisance thornbush Prosopis juliflora was utilized as an inexpensive and renewable biomass raw material for the sustainable production of activated carbon. Previously, the sequential muffle furnace-microwave arrangement was effective with acid activation for activated carbon synthesis. However, the intermediate synthesis steps were not optimized. In this work, we have optimized the intermediate steps, viz. chemical impregnation, carbonization, and microwave activation. Sequential optimization for base activation was developed and compared with acid activation. The base-activated carbon (BAC) exhibited a more crystalline nature and faster uptake kinetics than AAC. BAC demonstrated an adsorption capacity of 576 mg/g for 4-nitrophenol (4-NP) surpassing that of optimized acid-activated carbon (AAC) by 45%. The optimal base activation required 1.85 times lower microwave energy than that of the acid activation. BAC exhibited significantly higher BET surface area (1319 m2/g) and micropore volume (0.524 cm3/g) which were about 28% and 26% higher than those of AAC. When compared to biochar obtained from the same thornbush, the BAC exhibited an 11-fold increase in adsorption capacity. The adsorbents could be easily regenerated with ethanol and used up to five cycles. Adsorption using BAC also could achieve 80% COD removal for industrial wastewater, while AAC led to 61% removal. Continuous packed column with BAC revealed a breakthrough time of 3.5 h for industrial effluent while for 500 mg/L 4-nitrophenol, it was 25 h. Prosopis juliflora thornbush, an environmental nuisance, could be converted into a high-capacity adsorbent for environmental remediation after careful sequencing and optimization of the intermediate synthesis steps.


Subject(s)
Charcoal , Water Pollutants, Chemical , Charcoal/chemistry , Wastewater , Nitrophenols , Adsorption , Water Pollutants, Chemical/analysis , Kinetics
2.
ACS Omega ; 7(23): 19561-19578, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35721906

ABSTRACT

Unmodified (UN), acid-treated (AT) and microwave-acid-treated (MAT) activated carbons were optimized for their solute removal efficacies by adjusting feed mixture compositions and process conditions. Acetaminophen, benzotriazole, and caffeine were used either individually or as binary/ternary mixtures in this study. The process conditions considered were the pH, adsorbent dosage, and type of adsorbent. Experimental responses such as total adsorbent loading (q total) and total percentage removal (PRtotal) were fitted with empirical models that had high adjusted R 2 (>0.95), insignificant lack of fit (p-value > 0.22), and high model predictive R 2 (>0.93). Mixture compositions of the feed were found to interact significantly not only among themselves but with process variables as well. Hence, adsorption optimization must simultaneously consider mixture as well as process variables. The conventional response surface methodology for mixtures, termed as ridge analysis, optimizes mixture compositions at specified values of process variables. An improved steepest ascent method which considers mixture and process variables simultaneously was developed in this work. This could track the path of steepest ascent toward globally optimal settings, from any arbitrary starting point within the design space. For the chosen adsorbent, optimal settings for feed mixture compositions and pH were found to change along this steepest ascent path. The feed compositions, pH, and adsorbent dosage identified for maximum adsorbent utilization were usually quite different from those identified for maximum total percentage removal. When both these objectives were optimized together, the most favorable compromise solutions for q total and PRtotal were, respectively, 264.1 mg/g and 43.4% for UN, 294.9 mg/g and 52.5% for AT, and 336.6 mg/g and 55.9% for MAT.

3.
Environ Sci Pollut Res Int ; 29(53): 80336-80352, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35716298

ABSTRACT

Multicomponent adsorption processes are affected by both mixture and process variables viz. feed composition, pH, adsorbent dosage, and adsorbent type. Optimization of multicomponent adsorption processes with multiple objectives is challenging. It is important to accurately identify possible solutions and select the compromise solution that best satisfies the different objectives. Conventional algorithms, when applied to multicomponent adsorption, were found to identify the Pareto front less accurately, thereby necessitating the need for a reliable method. The steep portion of the Pareto front was especially not captured satisfactorily by the different conventional algorithms such as pattern search (PS), Non-dominated Sorting Genetic Algorithm (NSGA-II), and Epsilon-Constraint (EC). This portion assumes importance, if the compromise solution occurs in its vicinity. To address these challenges, a novel bi-objective optimization technique termed as elliptical method (EM) was developed and described in this work. It involves an exhaustive search, provides a well distributed Pareto front, and clearly delineates the steep region. After validating with benchmark problems, EM was applied to batch multi-component adsorption. The two objectives optimized simultaneously were adsorbent loading and percentage removal of the different solutes. The Pareto front and the compromise solution involving the best combination of the two objectives were significantly superior in the elliptical method when compared to those obtained from typical algorithms including epsilon-constraint (EC) method. The Pareto front was also well defined by the elliptical method without discontinuities near the extreme and steep regions. The number of points found by EM in the steeper region for the grade II adsorbent was 10 times greater than those found by the EC method while the PS and NSGA could not delineate this portion. The average time taken (considering both adsorbents) for EM per solution was 0.17 s which was at least 30.6% faster than the other methods. The compromise solution with the elliptical method was superior to the other methods. For instance, with grade II adsorbent, the compromise solution from the elliptical method suggested operating conditions that led to a total adsorbent loading and percentage removal of 333.4 mg/g and 56.0%. On the other hand, pattern search gave 324.1 mg/g and 56.5%, whereas the NSGA-II method gave 321.9 mg/g and 53.3%. For this adsorbent, elliptical method's compromise solution was 50% and 20% closer in terms of the Euclidean distance to the utopia point than NSGA and PS methods, respectively. The elliptical method will facilitate reliable wastewater tertiary treatment taking into cognizance the utilization of the adsorbent as well as the percentage purity requirement.


Subject(s)
Wastewater , Water Purification , Adsorption , Algorithms
4.
J Hazard Mater ; 423(Pt B): 127059, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34547690

ABSTRACT

The aim of this study is to develop a simple, economical and effective treatment scheme to treat effluents from small scale textile dyeing units and tanneries, which have been set up in rural areas. The physicochemical properties of real time effluents procured from these industries were analysed. The workflow required for treating these effluents were ascertained by preliminary tests carried out on synthetically created solutions. A novel treatment scheme for tannery and textile dye effluents sludge volume reduction by the use of sodium hypochlorite was identified. Effective methods for the safe disposal and recycling of all the by-products generated from different steps were discussed. The proposed scheme was successfully able to decolourize and detoxify both the tannery and textile dyeing effluent with over 90% removal of both COD and BOD. The impacts of the treatment scheme on 14 different effluent parameters were reported. The methodology developed in this study may be utilized to construct simple localized treatment units for handling effluents in isolated rural areas. This preliminary treatment at the source, will help in the reduction of the load on the local treatment plants and prevent their choking.


Subject(s)
Wastewater , Water Pollutants, Chemical , Coloring Agents , Industrial Waste/analysis , Sewage , Textile Industry , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
5.
Ultrason Sonochem ; 19(3): 509-21, 2012 May.
Article in English | MEDLINE | ID: mdl-22019317

ABSTRACT

The efficacy of power ultrasound of 20 kHz in enhancing the volumetric mass transfer coefficient was investigated in this study. Breakage and dissolution of sparingly soluble benzoic acid dispersed in either water or 24% aqueous glycerol was monitored as a function of time and ultrasound power input. Particle size measurements were carried out at intermediate times during the experiment to estimate the mean particle size and surface area. Linear combination of lognormal distributions was found to fit the experimental particle size distribution data. The De Brouckere mean diameters (d(43)) obtained from the particle size distributions decreased with increase in the ultrasonic power level. Empirical correlations were developed for the evolution of surface area as a function of ultrasonic energy input per unit mass. The effect of ultrasound on the intrinsic mass transfer coefficient (k(c)) could be decoupled from the volumetric mass transfer coefficient (k(c)a) as the surface area was also estimated. Different approaches involving either constant or variable intrinsic mass transfer coefficients were employed when carrying out the delineation. Mass transfer rates were enhanced due to both higher ultrasound induced intrinsic convective mass transfer coefficient and additional surface area created from particle breakage. To delineate the effects of particle breakage from solid dissolution, experiments were also carried out under non-mass transfer conditions by pre-saturating the solvents with benzoic acid. Both the solid-liquid systems examined in the present study attained saturation concentration when the ultrasonic energy input per unit mass was approximately 60 kJ/kg, irrespective of the ultrasonic power level setting.


Subject(s)
Benzoic Acid/chemistry , Benzoic Acid/radiation effects , Colloids/chemistry , Colloids/radiation effects , Models, Chemical , Sonication/methods , Water/chemistry , Computer Simulation , High-Energy Shock Waves , Radiation Dosage , Solubility , Surface Properties/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...