Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pilot Feasibility Stud ; 9(1): 69, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37098616

ABSTRACT

BACKGROUND: People with mobility limitations can benefit from rehabilitation programs incorporating intensive, repetitive, and task-specific exercises using digital devices such as virtual reality gaming systems, tablet and smartphone applications, and wearable devices. The Activity and MObility UsiNg Technology (AMOUNT) rehabilitation trial (n = 300) showed improvements in mobility in people using these types of digital devices in addition to their usual rehabilitation care when the intervention was provided by an additional study-funded physiotherapist. However, it is not clear if this intervention can be implemented by hospital physiotherapists with a usual clinical load. The AMOUNT Implementation trial aims to explore the feasibility of conducting a large-scale implementation trial. METHODS: A pragmatic, assessor blinded, feasibility hybrid type II randomized controlled trial will be undertaken at a public hospital in Australia. There will be two phases. Phase I (Implementation phase) will involve implementing the digital devices into physiotherapy practice. Physiotherapists from the rehabilitation ward will receive a multifaceted implementation strategy guided by the Capabilities, Opportunities, Motivation-Behaviour (COM-B) theoretical model. The implementation strategy includes identifying and training a clinical champion; providing digital devices and education and training; facilitating use of the devices through clinical reasoning sessions and journal clubs; and audit and feedback of exercise dosage documentation. Phase II (Trial phase) will involve randomising 30 eligible inpatients from the same ward into either usual care or usual care plus an additional 30 min or more of exercises using digital devices. This intervention will be provided by the physiotherapists who took part in the implementation phase. We will collect data on feasibility, implementation, and patient-level clinical outcomes. The three primary outcome measures are the extent to which physiotherapists document the dosage of exercises provided to participants (feasibility criteria: exercise practice sheets complete for ≥85% of all participants); ability to recruit participants; and fidelity to the protocol of using digital devices to prescribe exercises (feasibility criteria: average of ≥ 30mins per day for > 50% intervention participants). DISCUSSION: This feasibility study will provide important information to guide the planning and conduct of a future large-scale implementation trial. TRIAL REGISTRATION: Australian and New Zealand Clinical Trial Registry; ACTRN12621000938808; registered 19/07/2021. Trial sponsor: Prince of Wales Hospital. 320-346 Barker Street, Randwick, NSW, 2031, Australia. PROTOCOL VERSION: 6.2 7th April 2021.

2.
Spinal Cord ; 57(6): 449-460, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30723256

ABSTRACT

STUDY DESIGN: A systematic review. OBJECTIVE: The aim of this review was to determine the effectiveness of physiotherapy (PT) interventions for increasing voluntary muscle strength in people with spinal cord injuries (SCI). METHODS: We included randomised controlled trials of PT interventions for people with SCI. We were interested in two comparisons: PT interventions compared with sham or no intervention, and PT interventions compared to each other. The outcome of interest was voluntary strength of muscles directly affected by SCI. All included studies were rated according to the Cochrane Risk of Bias Tool and results of similar trials were pooled using meta-analyses where possible. RESULTS: Twenty-six trials met the inclusion criteria and provided useable data. A statistically significant between-group difference was found in four comparisons, namely, resistance training versus no intervention (standardised mean difference (SMD) = 0.64; 95% CI, 0.22-1.07; p = 0.003); resistance training combined with electrical stimulation versus no intervention (mean difference (MD) = 14 Nm; 95% CI, 1-27; p = 0.03); a package of PT interventions versus no intervention (MD = 4.8/50 points on the Lower Extremity Motor Score (LEMS); 95% CI 1.9-7.7; p = 0.01); and robotic gait training versus overground gait training (MD = 3.1/50 points on the LEMS; 95% CI, 1.3-5.0; p = 0.0008). CONCLUSION: There is evidence that a small number of PT interventions increase voluntary strength in muscles directly affected by SCI.


Subject(s)
Muscle Strength/physiology , Physical Therapy Modalities , Randomized Controlled Trials as Topic/methods , Spinal Cord Injuries/rehabilitation , Exercise Therapy/methods , Humans , Resistance Training/methods , Spinal Cord Injuries/diagnosis , Spinal Cord Injuries/physiopathology
3.
Food Chem ; 136(2): 1100-9, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23122168

ABSTRACT

Foods with elevated levels of resistant starch (RS) may have beneficial effects on human health. Pasta was enriched with commercial resistant starches (RSII, Hi Maize™ 1043; RSIII, Novelose 330™) at 10%, 20% and 50% substitution of semolina for RSII and 10% and 20% for RSIII and compared with pasta made from 100% durum wheat semolina to investigate technological, sensory, in vitro starch digestibility and structural properties. The resultant RS content of pasta increased from 1.9% to ∼21% and was not reduced on cooking. Significantly, the results indicate that 10% and 20% RSII and RSIII substitution of semolina had no significant effects on pasta cooking loss, texture and sensory properties, with only a minimal reduction in pasta yellowness. Both RS types lowered the extent of in vitro starch hydrolysis compared to that of control pasta. X-ray diffraction and small-angle scattering verified the incorporation of RS and, compared to the control sample, identified enhanced crystallinity and a changed molecular arrangement following digestion. These results can be contrasted with the negative impact on pasta resulting from substitution with equivalent amounts of more traditional dietary fibre such as bran. The study suggests that these RS-containing formulations may be ideal sources for the preparation of pasta with reduced starch digestibility.


Subject(s)
Digestion , Starch/chemistry , Starch/metabolism , Triticum/chemistry , Flour/analysis , Food Handling , Humans , Models, Biological , Taste , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...