Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Acoust Soc Am ; 147(5): 3657, 2020 May.
Article in English | MEDLINE | ID: mdl-32486769

ABSTRACT

Carnatic music (CM) is characterized by continuous pitch variations called gamakas, which are learned by example. Precision is measured on the points of zero-slope in gamaka- and non-gamaka-segments of the pitch curve as the standard deviation (SD) of the error in their pitch with respect to targets. Two previous techniques are considered to identify targets: the nearest semitone and the most likely mean of a semi-continuous Gaussian mixture model. These targets are employed irrespective of where the points of zero-slope occur in the pitch curve. The authors propose segmenting CM pitch curves into non-overlapping components called constant-pitch notes (CPNs) and stationary points (STAs), i.e., points where the pitch curve outside the CPNs changes direction. Targets are obtained statistically from the histograms of the mean pitch-values of CPNs, anchors (CPNs adjacent to STAs), and STAs. The upper and lower quartiles of SDs of errors in long CPNs (9-15 cents), short CPNs (20-26 cents), and STAs (41-54 cents) are separable, which justifies the component-wise treatment. The CPN-STA model also brings out a hitherto unreported structure in ragas and explains the precision obtained using the previous techniques.

2.
IEEE Trans Pattern Anal Mach Intell ; 39(10): 1959-1972, 2017 10.
Article in English | MEDLINE | ID: mdl-27875216

ABSTRACT

In this paper, we address the problem of registering a distorted image and a reference image of the same scene by estimating the camera motion that had caused the distortion. We simultaneously detect the regions of changes between the two images. We attend to the coalesced effect of rolling shutter and motion blur that occurs frequently in moving CMOS cameras. We first model a general image formation framework for a 3D scene following a layered approach in the presence of rolling shutter and motion blur. We then develop an algorithm which performs layered registration to detect changes. This algorithm includes an optimisation problem that leverages the sparsity of the camera trajectory in the pose space and the sparsity of changes in the spatial domain. We create a synthetic dataset for change detection in the presence of motion blur and rolling shutter effect covering different types of camera motion for both planar and 3D scenes. We compare our method with existing registration methods and also show several real examples captured with CMOS cameras.

SELECTION OF CITATIONS
SEARCH DETAIL
...