Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 129(4): 572-585, 2023 09.
Article in English | MEDLINE | ID: mdl-37355722

ABSTRACT

Immunotherapy, particularly those based on immune checkpoint inhibitors (ICIs), has become a useful approach for many neoplastic diseases. Despite the improvements of ICIs in supporting tumour regression and prolonging survival, many patients do not respond or develop resistance to treatment. Thus, therapies that enhance antitumour immunity, such as anticancer vaccines, constitute a feasible and promising therapeutic strategy. Whole tumour cell (WTC) vaccines have been extensively tested in clinical studies as intact or genetically modified cells or tumour lysates, injected directly or loaded on DCs with distinct adjuvants. The essential requirements of WTC vaccines include the optimal delivery of a broad battery of tumour-associated antigens, the presence of tumour cell-derived molecular danger signals, and adequate adjuvants. These factors trigger an early and robust local innate inflammatory response that orchestrates an antigen-specific and proinflammatory adaptive antitumour response capable of controlling tumour growth by several mechanisms. In this review, the strengths and weaknesses of our own and others' experiences in studying WTC vaccines are revised to discuss the essential elements required to increase anticancer vaccine effectiveness.


Subject(s)
Cancer Vaccines , Neoplasms , Humans , Cancer Vaccines/therapeutic use , Neoplasms/therapy , Antigens, Neoplasm , Immunity , Immunotherapy
2.
Physiother Theory Pract ; 38(8): 1016-1026, 2022 Aug.
Article in English | MEDLINE | ID: mdl-32814476

ABSTRACT

BACKGROUND: Clinical reasoning is a fundamental competency in the learning process of health professionals. Since learning with traditional methods presents difficulties, teaching with interactive virtual scenarios is a good alternative. OBJECTIVE: To describe the impact of a blended training with interactive virtual scenarios for the development of clinical reasoning skills in undergraduate physiotherapy students. METHODS: A sample of 92 students solved eight storylines. Assessment error percentage, clinical pattern recognition, satisfaction, and the perception of difficulty were obtained. A proportions test was used to compare baseline and final assessments. To analyze the relationship between the variables, multilevel univariate logistic regression models were built. RESULTS: A significant difference was observed in the error percentage between baseline and final assessment (p < .001). Comparing the last storyline to the first one, there were 2.63 times more possibilities to correctly recognize the pattern. The error percentage was associated with the opportunity to recognize the pattern precisely (p < .001). Thus, for each increasing unit in the error percentage, the possibility to correctly recognize the pattern decreased by 11% (OR = 0.89). CONCLUSIONS: The use of this innovative blended training with virtual scenarios allowed students to systematically improve their recognition abilities of clinical patterns and decrease mistakes in the decision-making process.


Subject(s)
Clinical Competence , Clinical Reasoning , Humans , Learning , Physical Therapy Modalities , Students
3.
Foot Ankle Surg ; 28(1): 37-43, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33509663

ABSTRACT

BACKGROUND: Achilles' tendon ruptures result in impaired plantar flexion strength and endurance. It is interesting to know the plantar flexion strength, the number of heel-rise repetitions, and the maximal calf circumference following Achilles' tendon ruptures repair. METHODS: Both the injured and non-injured legs of thirty male patients with Achilles' tendon ruptures treated with the percutaneous Dresden technique were compared with the ankle function of 30 healthy participants. Rehabilitation involved partial weight-bearing for three weeks and then increased to full weight-bearing and ankle exercises. RESULTS: The injured legs had weaker plantar flexion strength (1.64 ± 0.17 Nm/kg) compared with the non-injured legs (1.91 ± 0.24 Nm/kg; p = 0.002) and the healthy participants' legs (1.93 ± 0.32 Nm/kg; p < 0.001). The non-injured leg had greater ability in doing heel-rise repetitions (39.4 ± 6.1 rep.) compared with the injured legs (37.2 ± 5.7 rep.; p < 0.023) and the healthy participants' legs (31.0 ± 13.0 rep.; p < 0.001). CONCLUSIONS: The injured leg had not recovered full isometric strength but had improved heel-rise repetition.


Subject(s)
Achilles Tendon , Tendon Injuries , Achilles Tendon/surgery , Heel/surgery , Humans , Male , Rupture/surgery , Tendon Injuries/surgery , Treatment Outcome
4.
Front Immunol ; 12: 769059, 2021.
Article in English | MEDLINE | ID: mdl-34745145

ABSTRACT

The prognosis of severe COVID-19 patients has motivated research communities to uncover mechanisms of SARS-CoV-2 pathogenesis also on a regional level. In this work, we aimed to understand the immunological dynamics of severe COVID-19 patients with different degrees of illness, and upon long-term recovery. We analyzed immune cellular subsets and SARS-CoV-2-specific antibody isotypes of 66 COVID-19 patients admitted to the Hospital Clínico Universidad de Chile, which were categorized according to the WHO ten-point clinical progression score. These included 29 moderate patients (score 4-5) and 37 severe patients under either high flow oxygen nasal cannula (18 patients, score 6), or invasive mechanical ventilation (19 patients, score 7-9), plus 28 convalescent patients and 28 healthy controls. Furthermore, six severe patients that recovered from the disease were longitudinally followed over 300 days. Our data indicate that severe COVID-19 patients display increased frequencies of plasmablasts, activated T cells and SARS-CoV-2-specific antibodies compared to moderate and convalescent patients. Remarkably, within the severe COVID-19 group, patients rapidly progressing into invasive mechanical ventilation show higher frequencies of plasmablasts, monocytes, eosinophils, Th1 cells and SARS-CoV-2-specific IgG than patients under high flow oxygen nasal cannula. These findings demonstrate that severe COVID-19 patients progressing into invasive mechanical ventilation show a distinctive type of immunity. In addition, patients that recover from severe COVID-19 begin to regain normal proportions of immune cells 100 days after hospital discharge and maintain high levels of SARS-CoV-2-specific IgG throughout the study, which is an indicative sign of immunological memory. Thus, this work can provide useful information to better understand the diverse outcomes of severe COVID-19 pathogenesis.


Subject(s)
COVID-19/immunology , Eosinophils/immunology , Plasma Cells/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , Aged , Antibodies, Viral/blood , Convalescence , Disease Progression , Female , Humans , Immunity, Cellular , Immunoglobulin G/blood , Immunologic Memory , Male , Middle Aged , Severity of Illness Index
5.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32690772

ABSTRACT

BACKGROUND: Immune checkpoint blocker (ICB) therapy has shown survival benefits for some patients with cancer. Nevertheless, many individuals remain refractory or acquire resistance to treatment, motivating the exploration of complementary immunotherapies. Accordingly, cancer vaccines offer an attractive alternative. Optimal delivery of multiple tumor-associated antigens combined with potent adjuvants seems to be crucial for vaccine effectiveness. METHODS: Here, a prototype for a generic melanoma vaccine, named TRIMELVax, was tested using B16F10 mouse melanoma model. This vaccine is made of heat shock-treated tumor cell lysates combined with the Concholepas concholepas hemocyanin as adjuvant. RESULTS: While B16F10 lysate provides appropriate melanoma-associated antigens, both a generic human melanoma cell lysate and hemocyanin adjuvant contributes with danger signals promoting conventional dendritic type 1 cells (cDC1), activation, phagocytosis and effective antigen cross-presentation. TRIMELVax inhibited tumor growth and increased mice survival, inducing cellular and humoral immune responses. Furthermore, this vaccine generated an increased frequency of intratumor cDC1s but not conventional type 2 dendritic cells (cDC2s). Augmented infiltration of CD3+, CD4+ and CD8+ T cells was also observed, compared with anti-programmed cell death protein 1 (PD-1) monotherapy, while TRIMELVax/anti-PD-1 combination generated higher tumor infiltration of CD4+ T cells. Moreover, TRIMELVax promoted an augmented proportion of PD-1lo CD8+ T cells in tumors, a phenotype associated with prototypic effector cells required for tumor growth control, preventing dysfunctional T-cell accumulation. CONCLUSIONS: The therapeutic vaccine TRIMELVax efficiently controls the weakly immunogenic and aggressive B16F10 melanoma tumor growth, prolonging tumor-bearing mice survival even in the absence of ICB. The strong immunogenicity shown by TRIMELVax encourages clinical studies in patients with melanoma.


Subject(s)
Cancer Vaccines/immunology , Immunotherapy/methods , Melanoma, Experimental/genetics , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Mice , Mice, Inbred NOD
6.
Front Microbiol ; 10: 3160, 2019.
Article in English | MEDLINE | ID: mdl-32038589

ABSTRACT

In a desert, plants as holobionts quickly respond to resource pulses like precipitation. However, little is known on how environment and plants modulate the rhizosphere-associated microbiome. As a model species to represent the Atacama Desert bloom, Cistanthe longiscapa (Montiaceae family) was selected to study the influence of abiotic and biotic environment on the diversity and structure of the microbiota associated to its rhizosphere. We analyzed the rhizosphere and soil microbiome along a North-South precipitation gradient and between a dry and rainy year by using Illumina high-throughput sequencing of 16S rRNA gene fragments and ITS2 regions for prokaryotes and fungi, respectively. In the rhizosphere of C. longiscapa the microbiota clearly differs in composition and structure from the surrounding bulk soil. The fungal and bacterial communities respond differently to environmental conditions. The diversity and richness of fungal OTUs were negatively correlated with aridity, as predicted. The community structure was predominantly influenced by other soil characteristics (pH, organic matter content) but not by aridity. In contrast, diversity, composition, and structure of the bacterial community were not influenced by aridity or any other evaluated soil parameter. These findings coincide with the identification of mainly site-specific microbial communities, not shared along the sites. These local communities contain a group of OTUs, which are exclusive to the rhizosphere of each site and presumably vertically inherited as seed endophytes. Their ecological functions and dispersal mechanisms remain unclear. The analysis of co-occurrence patterns highlights the strong effect of the desert habitat over the soil- and rhizosphere-microbiome. The site-independent enrichment of only a small bacterial cluster consistently associated with the rhizosphere of C. longiscapa further supports this conclusion. In a rainy year, the rhizosphere microbiota significantly differed from bulk and bare soil, whereas in a dry year, the community structure of the former rhizosphere approximates to the one found in the bulk. In the context of plant-microbe interactions in desert environments, our study contributes new insights into the importance of aridity in microbial community structure and composition, discovering the influence of other soil parameters in this complex dynamic network, which needs further to be investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...