Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 117: 105425, 2021 12.
Article in English | MEDLINE | ID: mdl-34695733

ABSTRACT

Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.


Subject(s)
Fluorescent Dyes/chemistry , Histone Deacetylases/metabolism , Positron-Emission Tomography , Sirtuins/metabolism , Thioamides/chemistry , Electron Transport , Fluorescent Dyes/pharmacology , Histone Deacetylases/chemistry , Histone Deacetylases/genetics , Humans , Molecular Structure , Photochemical Processes , Sirtuins/antagonists & inhibitors , Sirtuins/chemistry , Thioamides/pharmacology
2.
Antioxidants (Basel) ; 8(12)2019 Nov 29.
Article in English | MEDLINE | ID: mdl-31795512

ABSTRACT

Garlic plants (Allium sativum L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein S-thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium Bacillus subtilis. Allicin and DAS4 caused a similar thiol-specific oxidative stress response, protein and DNA damage as revealed by the induction of the OhrR, PerR, Spx, YodB, CatR, HypR, AdhR, HxlR, LexA, CymR, CtsR, and HrcA regulons in the transcriptome. At the proteome level, we identified, in total, 108 S-thioallylated proteins under allicin and/or DAS4 stress. The S-thioallylome includes enzymes involved in the biosynthesis of surfactin (SrfAA, SrfAB), amino acids (SerA, MetE, YxjG, YitJ, CysJ, GlnA, YwaA), nucleotides (PurB, PurC, PyrAB, GuaB), translation factors (EF-Tu, EF-Ts, EF-G), antioxidant enzymes (AhpC, MsrB), as well as redox-sensitive MarR/OhrR and DUF24-family regulators (OhrR, HypR, YodB, CatR). Growth phenotype analysis revealed that the low molecular weight thiol bacillithiol, as well as the OhrR, Spx, and HypR regulons, confer protection against allicin and DAS4 stress. Altogether, we show here that allicin and DAS4 cause a strong oxidative, disulfide and sulfur stress response in the transcriptome and widespread S-thioallylation of redox-sensitive proteins in B. subtilis. The results further reveal that allicin and polysulfanes have similar modes of actions and thiol-reactivities and modify a similar set of redox-sensitive proteins by S-thioallylation.

3.
Biochim Biophys Acta Gen Subj ; 1863(6): 1050-1058, 2019 06.
Article in English | MEDLINE | ID: mdl-30885647

ABSTRACT

BACKGROUND: Diallylpolysulfanes are the key constituents of garlic oils, known to exhibit broad spectrum anticancer and antimicrobial activity. Studies in vitro, and in mammalian cells, have shown they react, via thiol-polysulfane exchange, with their major low molecular weight thiol, glutathione. However, there are no detailed reports of diallylpolysulfane effects on other common thiol metabolites (cysteine and coenzyme A) or major thiol cofactors (e.g. bacillithiol) that many Gram positive bacteria produce instead of glutathione. METHODS: Diallylpolysulfanes were individually purified then screened for antimicrobial activity against Bacillus subtilis. Their impact on thiol metabolites (bacillithiol, cysteine, coenzyme A, protein thiols allyl thiols//persulfides) in B. subtilis cultures were analysed, by HPLC. RESULTS: Diallylpolysulfane bioactivity increased with increasing chain length up to diallyltetrasulfane, but then plateaued. Within two minutes of treating B. subtilis with diallyltrisulfane or diallyltetrasulfane intracellular bacillithiol levels decreased by ~90%. Cysteine and CoA were also affected but to a lesser degree. This was accompanied by the accumulation of allyl thiol and allyl persulfide. A significant level of protein-S-allylation was also detected. CONCLUSIONS: In addition to the major low molecular weight thiol, diallylpolysulfanes can also have an impact on other thiol metabolites and protein thiols. GENERAL SIGNIFICANCE: This study shows the rapid parallel impact of polysulfanes on different biological thiols inside Bacillus subtilis alongside the concomitant generation of allyl thiols and persulfides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacillus subtilis/metabolism , Cysteine/analogs & derivatives , Garlic/chemistry , Glucosamine/analogs & derivatives , Anti-Bacterial Agents/chemistry , Cysteine/metabolism , Glucosamine/metabolism
4.
mBio ; 9(6)2018 11 27.
Article in English | MEDLINE | ID: mdl-30482829

ABSTRACT

Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.IMPORTANCE Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.


Subject(s)
Biosynthetic Pathways/genetics , Chlorobi/genetics , Chlorobi/metabolism , Cysteine/analogs & derivatives , Glucosamine/analogs & derivatives , Cysteine/chemistry , Cysteine/metabolism , Genome, Bacterial , Glucosamine/chemistry , Glucosamine/metabolism , Molecular Structure , Molecular Weight
5.
J Med Food ; 20(7): 685-690, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28410455

ABSTRACT

Mycobacterium tuberculosis remains one of the world's deadliest killers, with an annual death rate of ∼1.5 million. The medicinal effects of garlic have been well documented, and natural products have been shown to have antimycobacterial activity. The current study evaluated the efficacy of six Allium sativum L. polysulfide mixtures as antimycobacterial agents together with their cytotoxic, immunomodulatory, and hepatoprotective activities. The microtitre PrestoBlue assay was used to determine the minimum inhibitory concentrations (MIC). Cytotoxicity was evaluated by using peripheral blood mononuclear cells (PBMC). Excreted cytokine levels were determined by utilizing an enzyme-linked immunosorbent assay (ELISA), by exposing isolated PBMCs to varying concentrations of polysulfide mixtures. Human C3A liver cells were utilized in the hepatoprotective study, to assess the protective effect against the toxicity induced by acetaminophen. Samples with higher amounts of diallyl trisulfide (Sample G4) showed the highest antimycobacterial activity, exhibiting an MIC of 2.5 µg/mL against M. tuberculosis H37Rv. Five samples showed moderate toxicity in PBMC, with G1 showing no toxicity. The selective index of G4 was the highest, with a selectivity index close to one. Two samples, G3 and G6 containing higher amounts of diallyl tetrasulfide and lower amounts of diallyl trisulfide, showed >50% hepatoprotection. This is comparable to a hepatoprotective agent, Silymarin, which showed a hepatoprotective effect of 30% at the tested concentration. Diallyl tetrasulfide showed significant antimycobacterial activity. A combination of higher diallyl tetrasulfide and lower diallyl trisulfide was indicative of hepatoprotective activity.


Subject(s)
Anti-Bacterial Agents/pharmacology , Garlic/metabolism , Hepatocytes/drug effects , Immunologic Factors/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Sulfides/pharmacology , Anti-Bacterial Agents/metabolism , Cell Survival/drug effects , Garlic/chemistry , Garlic/classification , Hepatocytes/cytology , Humans , Immunologic Factors/chemistry , Immunologic Factors/metabolism , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Plant Extracts/metabolism , Protective Agents/metabolism , Sulfides/metabolism
6.
Chembiochem ; 14(16): 2160-8, 2013 Nov 04.
Article in English | MEDLINE | ID: mdl-24115506

ABSTRACT

Bacillithiol (BSH) is the major low-molecular-weight (LMW) thiol in many low-G+C Gram-positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa , redox potential and thiol-disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol-disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid-exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.


Subject(s)
Bacillus subtilis/chemistry , Cysteine/analogs & derivatives , Glucosamine/analogs & derivatives , Amines/chemistry , Bacillus subtilis/metabolism , Carboxylic Acids/chemistry , Cysteine/chemistry , Glucosamine/chemistry , Glutathione/chemistry , Kinetics , Oxidation-Reduction , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...