Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 202(1): 151-159, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30530595

ABSTRACT

The FcγRs are immune cell surface proteins that bind IgG and facilitate cytokine production, phagocytosis, and Ab-dependent, cell-mediated cytotoxicity. FcγRs play a critical role in immunity; variation in these genes is implicated in autoimmunity and other diseases. Cynomolgus macaques are an excellent animal model for many human diseases, and Mauritian cynomolgus macaques (MCMs) are particularly useful because of their restricted genetic diversity. Previous studies of MCM immune gene diversity have focused on the MHC and killer cell Ig-like receptor. In this study, we characterize FcγR diversity in 48 MCMs using PacBio long-read sequencing to identify novel alleles of each of the four expressed MCM FcγR genes. We also developed a high-throughput FcγR genotyping assay, which we used to determine allele frequencies and identify FcγR haplotypes in more than 500 additional MCMs. We found three alleles for FcγR1A, seven each for FcγR2A and FcγR2B, and four for FcγR3A; these segregate into eight haplotypes. We also assessed whether different FcγR alleles confer different Ab-binding affinities by surface plasmon resonance and found minimal difference in binding affinities across alleles for a panel of wild type and Fc-engineered human IgG. This work suggests that although MCMs may not fully represent the diversity of FcγR responses in humans, they may offer highly reproducible results for mAb therapy and toxicity studies.


Subject(s)
Genotype , Macaca fascicularis , Receptors, IgG/genetics , Alleles , Animals , Antibody-Dependent Cell Cytotoxicity , Gene Frequency , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Immunity , Immunoglobulin G/metabolism , Models, Animal , Protein Binding/genetics , Receptors, IgG/metabolism
2.
J Immunol ; 201(9): 2579-2592, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30282751

ABSTRACT

Low-dose IL-2 represents an immunotherapy to selectively expand regulatory T cells (Tregs) to promote tolerance in patients with autoimmunity. In this article, we show that a fusion protein (FP) of mouse IL-2 and mouse IL-2Rα (CD25), joined by a noncleavable linker, has greater in vivo efficacy than rIL-2 at Treg expansion and control of autoimmunity. Biochemical and functional studies support a model in which IL-2 interacts with CD25 in the context of this FP in trans to form inactive head-to-tail dimers that slowly dissociate into an active monomer. In vitro, IL-2/CD25 has low sp. act. However, in vivo IL-2/CD25 is long lived to persistently and selectively stimulate Tregs. In female NOD mice, IL-2/CD25 administration increased Tregs within the pancreas and reduced the instance of spontaneous diabetes. Thus, IL-2/CD25 represents a distinct class of IL-2 FPs with the potential for clinical development for use in autoimmunity or other disorders of an overactive immune response.


Subject(s)
Diabetes Mellitus/prevention & control , Immune Tolerance/immunology , Interleukin-2 Receptor alpha Subunit/genetics , Interleukin-2/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes, Regulatory/immunology , Animals , Cell Line , Female , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred NOD , Recombinant Fusion Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...