Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1338168, 2024.
Article in English | MEDLINE | ID: mdl-38699454

ABSTRACT

Introduction: Impaired function of brain morphogenic genes is considered one of the predisposing factors for the manifestation of psychiatric and cognitive disorders, such as paranoid schizophrenia (SCZ) and major depressive disorder (MDD). Identification of such genes (genes of neurotrophic factors and guidance molecules among them) and their deleterious genetic variants serves as a key to diagnosis, prevention, and possibly treatment of such disorders. In this study, we have examined the prevalence of genomic variants in brain morphogenic genes in individuals with SCZ and MDD within a Russian population. Methods: We have performed whole-exome sequencing of 21 DNA samples: 11 from individuals with SCZ and 10 with MDD, followed by ARMS (Amplification-Refractory Mutation System) based screening of detected single nucleotide variants (SNVs) in larger groups: 102 for individuals with SCZ, 79 for those with MDD and 103 for healthy donors. Results: Whole-exome sequencing has revealed 226 missense mutations in 79 genes (out of 140 studied), some of which occur in patients with psychiatric disorders significantly more frequently than in healthy donors. We have identified previously undescribed genomic variants in brain morphogenic genes: CDH2 (rs1944294-T and rs17445840-T), DCHS2 (rs11935573-G and rs12500437-G/T) and CDH23 (rs1227051-G/A), significantly associated with the incidence of SCZ and MDD in the Russian population. For some SNVs (rs6265-T, rs1944294-T, rs11935573-G, rs4760-G) sex-biased differences in their prevalence between SCZ/MDD patients and healthy donors was detected. Discussion: However, the functional significance of the SNVs identified has still to be confirmed in cellular and animal models. Once it is fulfilled, these SNVs have the potential to complement the diagnostic toolbox for assessing susceptibility to mental disorders. The data obtained indirectly confirm the importance of adequate brain structure formation for its correct functioning and preservation of mental health.

2.
Biochemistry (Mosc) ; 88(2): 231-252, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37072324

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and cell-cell interactions, and helps in discovery of new cell types and previously unexplored processes. From a clinical point of view, scRNA-seq facilitates deeper and more detailed analysis of molecular mechanisms of diseases and serves as a basis for the development of new preventive, diagnostic, and therapeutic strategies. The review describes different approaches to the analysis of scRNA-seq data, discusses the advantages and disadvantages of bioinformatics tools, provides recommendations and examples of their successful use, and suggests potential directions for improvement. We also emphasize the need for creating new protocols, including multiomics ones, for the preparation of DNA/RNA libraries of single cells with the purpose of more complete understanding of individual cells.


Subject(s)
Gene Expression Profiling , RNA , Gene Expression Profiling/methods , RNA/genetics , Cell Differentiation , Gene Library , Sequence Analysis, RNA/methods
3.
Cells ; 12(4)2023 02 11.
Article in English | MEDLINE | ID: mdl-36831252

ABSTRACT

Hypertension is a major risk factor for cardiovascular diseases, such as strokes and myocardial infarctions. Nearly 70% of hypertension onsets in adults can be attributed to obesity, primarily due to sympathetic overdrive and the dysregulated renin-angiotensin system. Sympathetic overdrive increases vasoconstriction via α1-adrenoceptor activation on vascular cells. Despite the fact that a sympathetic outflow increases in individuals with obesity, as a rule, there is a cohort of patients with obesity who do not develop hypertension. In this study, we investigated how adrenoceptors' expression and functioning in adipose tissue are affected by obesity-driven hypertension. Here, we demonstrated that α1A is a predominant isoform of α1-adrenoceptors expressed in the adipose tissue of patients with obesity, specifically by multipotent mesenchymal stromal cells (MSCs). These cells respond to prolonged exposure to noradrenaline in the model of sympathetic overdrive through the elevation of α1A-adrenoceptor expression and signaling. The extent of MSCs' response to noradrenaline correlates with a patient's arterial hypertension. scRNAseq analysis revealed that in the model of sympathetic overdrive, the subpopulation of MSCs with contractile phenotype expanded significantly. Elevated α1A-adrenoceptor expression is triggered specifically by beta3-adrenoceptors. These data define a novel pathophysiological mechanism of obesity-driven hypertension by which noradrenaline targets MSCs to increase microvessel constrictor responsivity.


Subject(s)
Hypertension , Mesenchymal Stem Cells , Humans , Receptors, Adrenergic, alpha-1/metabolism , Norepinephrine , Receptors, Adrenergic, beta-3 , Obesity , Mesenchymal Stem Cells/metabolism
4.
Int J Mol Sci ; 25(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38203461

ABSTRACT

Multipotent mesenchymal stromal cells (MSCs) regulate tissue repair through paracrine activity, with secreted proteins being significant contributors. Human tissue repair commonly results in fibrosis, where fibroblast differentiation into myofibroblasts is a major cellular mechanism. MSCs' paracrine activity can inhibit fibrosis development. We previously demonstrated that the separation of MSC secretome, represented by conditioned medium (CM), into subfractions enriched with extracellular vesicles (EV) or soluble factors (SF) boosts EV and SF antifibrotic effect. This effect is realized through the inhibition of fibroblast-to-myofibroblast differentiation in vitro. To unravel the mechanisms of MSC paracrine effects on fibroblast differentiation, we performed a comparative proteomic analysis of MSC secretome fractions. We found that CM was enriched in NF-κB activators and confirmed via qPCR that CM, but not EV or SF, upregulated NF-κB target genes (COX2, IL6, etc.) in human dermal fibroblasts. Furthermore, we revealed that EV and SF were enriched in TGF-ß, Notch, IGF, and Wnt pathway regulators. According to scRNAseq, 11 out of 13 corresponding genes were upregulated in a minor MSC subpopulation disappearing in profibrotic conditions. Thus, protein enrichment of MSC secretome fractions and cellular subpopulation patterns shift the balance in fibroblast-to-myofibroblast differentiation, which should be considered in studies of MSC paracrine effects and the therapeutic use of MSC secretome.


Subject(s)
Mesenchymal Stem Cells , Proteome , Humans , NF-kappa B , Proteomics , Secretome , Culture Media, Conditioned/pharmacology , Fibrosis
5.
Nucleic Acids Res ; 42(Web Server issue): W344-9, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24852248

ABSTRACT

The new web-server pocketZebra implements the power of bioinformatics and geometry-based structural approaches to identify and rank subfamily-specific binding sites in proteins by functional significance, and select particular positions in the structure that determine selective accommodation of ligands. A new scoring function has been developed to annotate binding sites by the presence of the subfamily-specific positions in diverse protein families. pocketZebra web-server has multiple input modes to meet the needs of users with different experience in bioinformatics. The server provides on-site visualization of the results as well as off-line version of the output in annotated text format and as PyMol sessions ready for structural analysis. pocketZebra can be used to study structure-function relationship and regulation in large protein superfamilies, classify functionally important binding sites and annotate proteins with unknown function. The server can be used to engineer ligand-binding sites and allosteric regulation of enzymes, or implemented in a drug discovery process to search for potential molecular targets and novel selective inhibitors/effectors. The server, documentation and examples are freely available at http://biokinet.belozersky.msu.ru/pocketzebra and there are no login requirements.


Subject(s)
Proteins/metabolism , Software , Algorithms , Binding Sites , Computational Biology , Internet , Ligands , Proteins/chemistry , Proteins/classification , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...