Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 96: 103591, 2020 03.
Article in English | MEDLINE | ID: mdl-32004896

ABSTRACT

We describe herein the synthesis, characterization and biological studies of novel PEGylated triarylmethanes. Non-symmetrical and symmetrical triarylmethanes series have been synthesized by Friedel-Crafts hydroxyalkylation or directly from bisacodyl respectively followed by a functionalization with PEG fragments in order to increase bioavailability and biological effectiveness. The antimicrobial activity was investigated against Gram-positive and Gram-negative foodborne pathogens and against Candida albicans, an opportunistic pathogenic yeast. The anti-biocidal activity was also studied using Staphylococcus aureus as a reference bacterium. Almost all PEGylated molecules displayed an antifungal activity comparable with fusidic acid with MIC values ranging from 6.25 to 50 µg/mL. Compounds also revealed a promising antibiofilm activity with biofilm eradication percentages values above 80% for the best molecules (compounds 4d and 7). Compounds 7 and 8b showed a modest antiproliferative activity against human colorectal cancer cell lines HT-29. Finally, in silico molecular docking studies revealed DHFR and DNA gyrase B as potential anti-bacterial targets and in silico predictions of ADME suggested adequate drug-likeness profiles for the synthetized triarylmethanes.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Methane/analogs & derivatives , Methane/pharmacology , Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Bacteria/drug effects , Bacterial Infections/drug therapy , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Candidiasis/drug therapy , Cell Proliferation/drug effects , HT29 Cells , Humans , Methane/chemical synthesis , Microbial Sensitivity Tests , Molecular Docking Simulation , Polycyclic Aromatic Hydrocarbons/chemical synthesis , Polycyclic Aromatic Hydrocarbons/chemistry , Polycyclic Aromatic Hydrocarbons/pharmacology , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacology
2.
Mini Rev Med Chem ; 18(15): 1294-1301, 2018.
Article in English | MEDLINE | ID: mdl-28183263

ABSTRACT

BACKGROUND & OBJECTIVE: The inhibitory effects of four series of aryl butene derivatives, active against breast cancer, on the monophenolase activity of tyrosinase, in melanin-free ink from Sepia officinalis, have been studied. Hydroxytamoxifen 1, ferrociphenol 17 and several aryl butene analogs have shown strong antiproliferative activity on hormone-dependent and hormone-independent breast cancer cells and were evaluated in leukemia K562 cell proliferation. Their potential to induce skin depigmentation by evaluating their anti-tyrosinase activity was also estimated. In order to better rationalize the tyrosinase inhibitory action and the binding mode of the compounds, docking studies were carried out. CONCLUSION: Hydroxytamoxifen and some aryl butenes showed strong antiproliferative effects against K562 cells at 1 µM without showing tyrosinase inhibition. If phenolic compounds 16 and 17 showed the best antiproliferative activity on K562, Hydroxytamoxifen and compounds 5, 10, 20 and 21 have been identified as candidates for further development against chronic myeloid leukemia (CML), and are predicted to not induce depigmentation of the skin, a side effect encountered with imatinib, conventionally used for the treatment of CML.


Subject(s)
Alkenes/chemistry , Enzyme Inhibitors/chemistry , Monophenol Monooxygenase/antagonists & inhibitors , Alkenes/metabolism , Alkenes/pharmacology , Alkenes/therapeutic use , Apoptosis/drug effects , Binding Sites , Catalytic Domain , Cell Proliferation/drug effects , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Humans , Hydrogen Bonding , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Molecular Conformation , Molecular Docking Simulation , Monophenol Monooxygenase/metabolism , Tamoxifen/analogs & derivatives , Tamoxifen/chemistry , Tamoxifen/metabolism , Tamoxifen/pharmacology , Tamoxifen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...