Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5915, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37041230

ABSTRACT

Internal waves contain a large amount of energy in the ocean and are an important source of turbulent mixing. Ocean mixing is relevant for climate because it drives vertical transport of water, heat, carbon and other tracers. Understanding the life cycle of internal waves, from generation to dissipation, is therefore important for improving the representation of ocean mixing in climate models. Here, we provide evidence from a regional realistic numerical simulation in the northeastern Pacific that the wind can play an important role in damping internal waves through current feedback. This results in a reduction of 67% of wind power input at near-inertial frequencies in the region of study. Wind-current feedback also provides a net energy sink for internal tides, removing energy at a rate of 0.2 mW/m[Formula: see text] on average, corresponding to 8% of the local internal tide generation at the Mendocino ridge. The temporal variability and modal distribution of this energy sink are also investigated.

2.
Clim Dyn ; 59(9-10): 2887-2913, 2022.
Article in English | MEDLINE | ID: mdl-36196258

ABSTRACT

High-frequency precipitation variance is calculated in 12 different free-running (non-data-assimilative) coupled high resolution atmosphere-ocean model simulations, an assimilative coupled atmosphere-ocean weather forecast model, and an assimilative reanalysis. The results are compared with results from satellite estimates of precipitation and rain gauge observations. An analysis of irregular sub-daily fluctuations, which was applied by Covey et al. (Geophys Res Lett 45:12514-12522, 2018. 10.1029/2018GL078926) to satellite products and low-resolution climate models, is applied here to rain gauges and higher-resolution models. In contrast to lower-resolution climate simulations, which Covey et al. (2018) found to be lacking with respect to variance in irregular sub-daily fluctuations, the highest-resolution simulations examined here display an irregular sub-daily fluctuation variance that lies closer to that found in satellite products. Most of the simulations used here cannot be analyzed via the Covey et al. (2018) technique, because they do not output precipitation at sub-daily intervals. Thus the remainder of the paper focuses on frequency power spectral density of precipitation and on cumulative distribution functions over time scales (2-100 days) that are still relatively "high-frequency" in the context of climate modeling. Refined atmospheric or oceanic model grid spacing is generally found to increase high-frequency precipitation variance in simulations, approaching the values derived from observations. Mesoscale-eddy-rich ocean simulations significantly increase precipitation variance only when the atmosphere grid spacing is sufficiently fine (< 0.5°). Despite the improvements noted above, all of the simulations examined here suffer from the "drizzle effect", in which precipitation is not temporally intermittent to the extent found in observations.

3.
Remote Sens Earth Syst Sci ; 5(1-2): 1-13, 2022.
Article in English | MEDLINE | ID: mdl-34250444

ABSTRACT

Marine business and resources play a major role in the economics and way of life in coastal West African countries. Such countries see great profitability from their marine resources while also facing challenges that come with a bordering sea. Despite this fact, there has been limited research into the optimal way for West African Coastal States to coexist with, and sustainably use their marine resources, a research deficit that is mainly due to a lack of infrastructure for in-situ work, lack of capacity development, and comprehensive datasets to undertake oceanographic research. The Coastal Ocean Environment Summer School in Ghana (COESSING; www.coessing.org) was developed to help meet some of these challenges. Each summer since 2015, ocean scientists (e.g., biologists, chemists, physicists, hydrologists) from the USA and Europe have collaborated with West African colleagues to lead a week-long intensive summer school in Accra, Ghana, alternating in location between the Regional Maritime University and the University of Ghana. The school receives in excess of 100 participants drawn from universities, government agencies, and the private sector organizations, mainly from Ghana and neighboring Liberia, Nigeria, Togo, and Benin, among others. The format of the school includes morning lectures, afternoon field trips, and hands-on laboratory exercises and one-on-one coaching of students. Important to the COESSING program is the satellite oceanography component which introduces participants to the extensive and often free, remotely sensed oceanographic datasets. Participants develop skills that allow them to access, process, and analyze these datasets in order to better understand regional oceanographic phenomena, such as upwelling, pollution, habitat characterization, sea level rise, and coastal erosion. Following the school, facilitators keep in touch with program participants, helping them acquire and analyze data for their studies, dissertations, and often graduate school applications, etc. In summary, schools such as COESSING are critical not only for science in the region but for the global ocean community as such training develops eager, bright minds while leading to improved regional observing and modeling strategies in severely under-sampled seas. Here, we describe a unique case in which satellite oceanography has led to such outcomes for countries bordering the Gulf of Guinea, West Africa.

4.
J Geophys Res Planets ; 126(12): e2021JE006875, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35846556

ABSTRACT

Tides and Earth-Moon system evolution are coupled over geological time. Tidal energy dissipation on Earth slows E a r t h ' s rotation rate, increases obliquity, lunar orbit semi-major axis and eccentricity, and decreases lunar inclination. Tidal and core-mantle boundary dissipation within the Moon decrease inclination, eccentricity and semi-major axis. Here we integrate the Earth-Moon system backwards for 4.5 Ga with orbital dynamics and explicit ocean tide models that are "high-level" (i.e., not idealized). To account for uncertain plate tectonic histories, we employ Monte Carlo simulations, with tidal energy dissipation rates (normalized relative to astronomical forcing parameters) randomly selected from ocean tide simulations with modern ocean basin geometry and with 55, 116, and 252 Ma reconstructed basin paleogeometries. The normalized dissipation rates depend upon basin geometry and E a r t h ' s rotation rate. Faster Earth rotation generally yields lower normalized dissipation rates. The Monte Carlo results provide a spread of possible early values for the Earth-Moon system parameters. Of consequence for ocean circulation and climate, absolute (un-normalized) ocean tidal energy dissipation rates on the early Earth may have exceeded t o d a y ' s rate due to a closer Moon. Prior to ∼ 3 Ga , evolution of inclination and eccentricity is dominated by tidal and core-mantle boundary dissipation within the Moon, which yield high lunar orbit inclinations in the early Earth-Moon system. A drawback for our results is that the semi-major axis does not collapse to near-zero values at 4.5 Ga, as indicated by most lunar formation models. Additional processes, missing from our current efforts, are discussed as topics for future investigation.

5.
Proc Natl Acad Sci U S A ; 115(46): 11700-11705, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30373837

ABSTRACT

Oceanic uptake of anthropogenic CO2 leads to decreased pH, carbonate ion concentration, and saturation state with respect to CaCO3 minerals, causing increased dissolution of these minerals at the deep seafloor. This additional dissolution will figure prominently in the neutralization of man-made CO2 However, there has been no concerted assessment of the current extent of anthropogenic CaCO3 dissolution at the deep seafloor. Here, recent databases of bottom-water chemistry, benthic currents, and CaCO3 content of deep-sea sediments are combined with a rate model to derive the global distribution of benthic calcite dissolution rates and obtain primary confirmation of an anthropogenic component. By comparing preindustrial with present-day rates, we determine that significant anthropogenic dissolution now occurs in the western North Atlantic, amounting to 40-100% of the total seafloor dissolution at its most intense locations. At these locations, the calcite compensation depth has risen ∼300 m. Increased benthic dissolution was also revealed at various hot spots in the southern extent of the Atlantic, Indian, and Pacific Oceans. Our findings place constraints on future predictions of ocean acidification, are consequential to the fate of benthic calcifiers, and indicate that a by-product of human activities is currently altering the geological record of the deep sea.


Subject(s)
Calcium Carbonate/chemistry , Carbon Dioxide/adverse effects , Seawater/chemistry , Calcium Carbonate/analysis , Carbon Dioxide/analysis , Ecosystem , Human Activities , Hydrogen-Ion Concentration , Oceans and Seas , Pacific Ocean , Seawater/analysis , Solubility , Water
6.
Bull Am Meteorol Soc ; 98(11): 2429-2454, 2017 Nov.
Article in English | MEDLINE | ID: mdl-30270923

ABSTRACT

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

7.
J Phys Oceanogr ; 47(6): 1-56, 2017 Aug.
Article in English | MEDLINE | ID: mdl-29657336

ABSTRACT

Motivated by the substantial sensitivity of eddies in two-layer quasi-geostrophic (QG) turbulence models to the strength of bottom drag, this study explores the sensitivity of eddies in more realistic ocean general circulation model (OGCM) simulations to bottom drag strength. The OGCM results are interpreted using previous results from horizontally homogeneous, two-layer, flat-bottom, f-plane, doubly periodic QG turbulence simulations and new results from two-layer ß-plane QG turbulence simulations run in a basin geometry with both flat and rough bottoms. Baroclinicity in all of the simulations varies greatly with drag strength, with weak drag corresponding to more barotropic flow and strong drag corresponding to more baroclinic flow. The sensitivity of the baroclinicity in the QG basin simulations to bottom drag is considerably reduced, however, when rough topography is used in lieu of a flat bottom. Rough topography reduces the sensitivity of the eddy kinetic energy amplitude and horizontal length scales in the QG basin simulations to bottom drag to an even greater degree. The OGCM simulation behavior is qualitatively similar to that in the QG rough bottom basin simulations in that baroclinicity is more sensitive to bottom drag strength than are eddy amplitudes or horizontal length scales. Rough topography therefore appears to mediate the sensitivity of eddies in models to the strength of bottom drag. The sensitivity of eddies to parameterized topographic internal lee wave drag, which has recently been introduced into some OGCMs, is also briefly discussed. Wave drag acts like a strong bottom drag in that it increases the baroclinicity of the flow, without strongly affecting eddy horizontal length scales.

8.
Nature ; 432(7016): 460, 2004 Nov 25.
Article in English | MEDLINE | ID: mdl-15565143

ABSTRACT

Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

SELECTION OF CITATIONS
SEARCH DETAIL
...