Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 339: 117805, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37043912

ABSTRACT

As climate-related impacts threaten marine biodiversity globally, it is important to adjust conservation efforts to mitigate the effects of climate change. Translating scientific knowledge into practical management, however, is often complicated due to resource, economic and policy constraints, generating a knowledge-action gap. To develop potential solutions for marine turtle conservation, we explored the perceptions of key actors across 18 countries in the Mediterranean. These actors evaluated their perceived relative importance of 19 adaptation and mitigation measures that could safeguard marine turtles from climate change. Of importance, despite differences in expertise, experience and focal country, the perceptions of researchers and management practitioners largely converged with respect to prioritizing adaptation and mitigation measures. Climate change was considered to have the greatest impacts on offspring sex ratios and suitable nesting sites. The most viable adaptation/mitigation measures were considered to be reducing other pressures that act in parallel to climate change. Ecological effectiveness represented a key determinant for implementing proposed measures, followed by practical applicability, financial cost, and societal cost. This convergence in opinions across actors likely reflects long-standing initiatives in the Mediterranean region towards supporting knowledge exchange in marine turtle conservation. Our results provide important guidance on how to prioritize measures that incorporate climate change in decision-making processes related to the current and future management and protection of marine turtles at the ocean-basin scale, and could be used to guide decisions in other regions globally. Importantly, this study demonstrates a successful example of how interactive processes can be used to fill the knowledge-action gap between research and management.


Subject(s)
Ecosystem , Turtles , Animals , Conservation of Natural Resources/methods , Climate Change , Biodiversity
2.
PeerJ ; 8: e10544, 2020.
Article in English | MEDLINE | ID: mdl-33362978

ABSTRACT

BACKGROUND: The Mediterranean subpopulation of fin whale Balaenoptera physalus (Linnaeus, 1758) has recently been listed as Vulnerable by the IUCN Red List of threatened species. The species is also listed as species in need of strict protection under the Habitat Directive and is one of the indicators for the assessment of Good Environmental Status under the MSFD. Reference values on population abundance and trends are needed in order to set the threshold values and to assess the conservation status of the population. METHODS: Yearly summer monitoring using ferries as platform of opportunity was performed since 2008 within the framework of the FLT Med Network. Data were collected along several fixed transects crossing the Western Mediterranean basin and the Adriatic and Ionian region. Species presence, expressed by density recorded along the sampled transects, was inspected for assessing interannual variability together with group size. Generalized Additive Models were used to describe density trends over a 11 years' period (2008-2018). A spatial multi-scale approach was used to highlight intra-basin differences in species presence and distribution during the years. RESULTS: Summer presence of fin whales in the western Mediterranean area showed a strong interannual variability, characterized by the alternance of rich and poor years. Small and large groups of fin whales were sighted only during rich years, confirming the favorable feeding condition influencing species presence. Trends highlighted by the GAM can be summarized as positive from 2008 to 2013, and slightly negative from 2014 to 2018. The sub-areas analysis showed a similar pattern, but with a more stable trend during the second period in the Pelagos Sanctuary sub-area, and a negative one in the other two sub-areas. Our findings further confirm the need for an integrated approach foreseeing both, large scale surveys and yearly monitoring at different spatial scales to correct and interpret the basin wide abundance estimates, and to correlate spatial and temporal trends with the ecological and anthropogenic drivers.

3.
Mar Pollut Bull ; 129(2): 545-554, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29042107

ABSTRACT

Marine litter is a major source of pollution in the Mediterranean basin, but despite legislative requirements, scant information is available for the ongoing assessment of this threat. Using higher size classes as proxy for litter distribution, this study gave a synoptic estimation of the amount, composition, and distribution of floating macro-litter in the Mediterranean. The average amount of macro-litter was in a range of 2-5items/km2, with the highest in the Adriatic basin. Seasonal patterns were present in almost all study areas and were significant in the Ligurian Sea, Sardinian-Balearic basin, and Central Tyrrhenian Sea. Plastic accounted for >80% of litter in all areas and seasons, with the highest proportion in the Adriatic Sea, Ligurian Sea, and Sicilian-Sardinian Channels; in the Bonifacio Strait, Tyrrhenian Sea, and Sardinian-Balearic basin, litter composition was instead more diverse. Spatial analysis suggested an almost homogeneous distribution of litter without evident regular aggregation zones.


Subject(s)
Environmental Monitoring/methods , Plastics/analysis , Waste Products/analysis , Water Pollutants, Chemical/analysis , Geographic Information Systems , Mediterranean Region , Mediterranean Sea , Seasons , Spatial Analysis
4.
PLoS One ; 12(6): e0179686, 2017.
Article in English | MEDLINE | ID: mdl-28644882

ABSTRACT

Spatially explicit risk assessment is an essential component of Marine Spatial Planning (MSP), which provides a comprehensive framework for managing multiple uses of the marine environment, minimizing environmental impacts and conflicts among users. In this study, we assessed the risk of the exposure to high intensity vessel traffic areas for the three most abundant cetacean species (Stenella coeruleoalba, Tursiops truncatus and Balaenoptera physalus) in the southern area of the Pelagos Sanctuary, which is the only pelagic Marine Protected Area (MPA) for marine mammals in the Mediterranean Sea. In particular, we modeled the occurrence of the three cetacean species as a function of habitat variables in June by using hierarchical Bayesian spatial-temporal models. Similarly, we modelled the marine traffic intensity in order to find high risk areas and estimated the potential conflict due to the overlap with the cetacean home ranges. Results identified two main hot-spots of high intensity marine traffic in the area, which partially overlap with the area of presence of the studied species. Our findings emphasize the need for nationally relevant and transboundary planning and management measures for these marine species.


Subject(s)
Bottle-Nosed Dolphin , Conservation of Natural Resources , Fin Whale , Risk Assessment , Ships , Stenella , Animals , Bayes Theorem , Ecosystem , Mediterranean Sea , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...