Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Chem Ecol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914799

ABSTRACT

Plant domestication often alters plant traits, including chemical and physical defenses against herbivores. In squash, domestication leads to reduced levels of cucurbitacins and leaf trichomes, influencing interactions with insects. However, the impact of domestication on inducible defenses in squash remains poorly understood. Here, we investigated the chemical and physical defensive traits of wild and domesticated squash (Cucurbita argyrosperma), and compared their responses to belowground and aboveground infestation by the root-feeding larvae and the leaf-chewing adults of the banded cucumber beetle Diabrotica balteata (Coleoptera: Chrysomelidae). Wild populations contained cucurbitacins in roots and cotyledons but not in leaves, whereas domesticated varieties lacked cucurbitacins in all tissues. Belowground infestation by D. balteata larvae did not increase cucurbitacin levels in the roots but triggered the expression of cucurbitacin biosynthetic genes, irrespective of domestication status, although the response varied among different varieties. Conversely, whereas wild squash had more leaf trichomes than domesticated varieties, the induction of leaf trichomes in response to herbivory was greater in domesticated plants. Leaf herbivory varied among varieties but there was a trend of higher leaf damage on wild squash than domesticated varieties. Overall, squash plants responded to both belowground and aboveground herbivory by activating chemical defense-associated gene expression in roots and upregulating their physical defense in leaves, respectively. While domestication suppressed both chemical and physical defenses, our findings suggest that it may enhance inducible defense mechanisms by increasing trichome induction in response to herbivory.

2.
J Pest Sci (2004) ; 96(3): 1061-1075, 2023.
Article in English | MEDLINE | ID: mdl-37181825

ABSTRACT

Cucurbitaceae plants produce cucurbitacins, bitter triterpenoids, to protect themselves against various insects and pathogens. Adult banded cucumber beetles (Diabrotica balteata), a common pest of maize and cucurbits, sequester cucurbitacins, presumably as a defensive mechanism against their natural enemies, which might reduce the efficacy of biological control agents. Whether the larvae also sequester and are protected by cucurbitacins is unclear. We profiled cucurbitacin levels in four varieties of cucumber, Cucumis sativus, and in larvae fed on these varieties. Then, we evaluated larval growth and resistance against common biocontrol organisms including insect predators, entomopathogenic nematodes, fungi and bacteria. We found considerable qualitative and quantitative differences in the cucurbitacin levels of the four cucumber varieties. While two varieties were fully impaired in their production, the other two accumulated high levels of cucurbitacins. We also observed that D. balteata larvae sequester and metabolize cucurbitacins, and although the larvae fed extensively on both belowground and aboveground tissues, the sequestered cucurbitacins were mainly derived from belowground tissues. Cucurbitacins had no detrimental effects on larval performance and, surprisingly, did not provide protection against any of the natural enemies evaluated. Our results show that D. balteata larvae can indeed sequester and transform cucurbitacins, but sequestered cucurbitacins do not impact the biocontrol potential of common natural enemies used in biocontrol. Hence, this plant trait should be conserved in plant breeding programs, as it has been demonstrated in previous studies that it can provide protection against plant pathogens and generalist insects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10340-022-01568-3.

3.
Plant Environ Interact ; 3(1): 28-39, 2022 Feb.
Article in English | MEDLINE | ID: mdl-37283693

ABSTRACT

The domestication of plants has commonly resulted in the loss of plant defense metabolites, with important consequences for the plants' interactions with herbivores and their natural enemies. Squash domestication started 10'000 years ago and has led to the loss of cucurbitacins, which are highly toxic triterpenes. The banded cucumber beetle (Diabrotica balteata), a generalist herbivore, is adapted to feed on plants from the Cucurbitaceae and is known to sequester cucurbitacins, supposedly for its own defense. However, the evidence for this is inconclusive. In this study we tested the impact of squash domestication on the chemical protection of D. balteata larvae against a predatory rove beetle (Dalotia coriaria). We found that cucurbitacins do not defend the larvae against this common soil dwelling predator. In fact, D. balteata larvae were less attacked when they fed on cucurbitacin-free roots of domesticated varieties compared to high-cucurbitacin roots of wild plants. This study appears to be the first to look at the consequences of plant domestication on belowground tritrophic interactions. Our results challenge the generalized assumption that sequestered cucurbitacins protect this herbivore against natural enemies, and instead reveals an opposite effect that may be due to a tradeoff between coping with cucurbitacins and avoiding predation.

4.
J Nematol ; 532021.
Article in English | MEDLINE | ID: mdl-34790901

ABSTRACT

Species of the nematode genus Heterorhabditis are important biological control agents against agricultural pests. The taxonomy of this group is still unclear as it currently relies on phylogenetic reconstructions based on a few genetic markers with little resolutive power, specially of closely related species. To fill this knowledge gap, we sequenced several phylogenetically relevant genetic loci and used them to reconstruct phylogenetic trees, to calculate sequence similarity scores, and to determine signatures of species- and population-specific genetic polymorphism. In addition, we revisited the current literature related to the description, synonymisation, and declaration as species inquirendae of Heterorhabditis species to compile taxonomically relevant morphological and morphometric characters, characterized new nematode isolates at the morphological and morphometrical level, and conducted self-crossing and cross-hybridization experiments. The results of this study show that the sequences of the mitochondrial cytochrome C oxidase subunit I (COI) gene provide better phylogenetic resolutive power than the sequences of nuclear rRNA genes and that this gene marker can phylogenetically resolve closely related species and even populations of the same species with high precision. Using this gene marker, we found two new species, Heterorhabditis ruandica n. sp. and Heterorhabditis zacatecana n. sp. A detailed characterization of these species at the morphological and morphometric levels and nematode reproduction assays revealed that the threshold for species delimitation in this genus, using COI sequences, is 97% to 98%. Our study illustrates the importance of rigorous morphological and morphometric characterization and multi-locus sequencing for the description of new species within the genus Heterorhabditis, serves to clarify the phylogenetic relationships of this important group of biological control agents, and can inform future species descriptions to advance our efforts towards developing more tools for sustainable and environmentally friendly agriculture.

6.
Sci Rep ; 10(1): 8257, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32427834

ABSTRACT

Natural enemies of herbivores are expected to adapt to the defence strategies of their preys or hosts. Such adaptations may also include their capacity to cope with plant metabolites that herbivores sequester as a defence. In this study, we evaluated the ability of Mexican entomopathogenic nematodes (EPN) to resist benzoxazinoids that are sequestered from maize roots by the western corn rootworm (WCR, Diabrotica virgifera virgifera; Coleoptera: Chrysomelidae), an important maize pest in America and Europe. From maize fields throughout Mexico, we retrieved 40 EPN isolates belonging to five different species, with a majority identified as Heterorhabditis bacteriophora. In the laboratory, all nematodes readily infected non-sequestering larvae of the banded cucumber beetle (D. balteata), while infectivity varied strongly for WCR larvae. While some H. bacteriophora isolates seemed negatively affected by benzoxazinoids, most showed to be resistant. Thus, EPN from Mexican maize fields can cope with these plant defence metabolites, but the results also indicate that WCR larvae possess other mechanisms that help to resist EPN. This work contributes to a better understanding of the capacity of herbivore natural enemies to resist plant defence metabolites. Furthermore, it identifies several benzoxazinoid-resistant EPN isolates that may be used to control this important maize pest.


Subject(s)
Benzoxazines/pharmacology , Coleoptera/drug effects , Coleoptera/parasitology , Insecticide Resistance , Insecticides/pharmacology , Nematoda/physiology , Plant Diseases/parasitology , Zea mays/parasitology , Animals , Coleoptera/physiology , Herbivory/drug effects , Herbivory/physiology , Larva/drug effects , Larva/parasitology , Larva/physiology , Mexico , Pest Control, Biological
7.
Nat Biotechnol ; 38(5): 600-608, 2020 05.
Article in English | MEDLINE | ID: mdl-32066956

ABSTRACT

The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode-symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode-symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.


Subject(s)
Aquaporins/genetics , Benzoxazines/pharmacology , Drug Resistance, Bacterial , Nematoda/microbiology , Photorhabdus/physiology , Zea mays/growth & development , Animals , Bacterial Proteins/genetics , Evolution, Molecular , Genetic Engineering , Mutation , Nematoda/pathogenicity , Pest Control, Biological , Photorhabdus/drug effects , Photorhabdus/genetics , Plant Diseases/prevention & control , Zea mays/parasitology
8.
Proc Natl Acad Sci U S A ; 116(46): 23174-23181, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31659056

ABSTRACT

Plants defend themselves against herbivores through the production of toxic and deterrent metabolites. Adapted herbivores can tolerate and sometimes sequester these metabolites, allowing them to feed on defended plants and become toxic to their own enemies. Can herbivore natural enemies overcome sequestered plant defense metabolites to prey on adapted herbivores? To address this question, we studied how entomopathogenic nematodes cope with benzoxazinoid defense metabolites that are produced by grasses and sequestered by a specialist maize herbivore, the western corn rootworm. We find that nematodes from US maize fields in regions in which the western corn rootworm was present over the last 50 y are behaviorally and metabolically resistant to sequestered benzoxazinoids and more infective toward the western corn rootworm than nematodes from other parts of the world. Exposure of a benzoxazinoid-susceptible nematode strain to the western corn rootworm for 5 generations results in higher behavioral and metabolic resistance and benzoxazinoid-dependent infectivity toward the western corn rootworm. Thus, herbivores that are exposed to a plant defense sequestering herbivore can evolve both behavioral and metabolic resistance to plant defense metabolites, and these traits are associated with higher infectivity toward a defense sequestering herbivore. We conclude that plant defense metabolites that are transferred through adapted herbivores may result in the evolution of resistance in herbivore natural enemies. Our study also identifies plant defense resistance as a potential target for the improvement of biological control agents.


Subject(s)
Benzoxazines/metabolism , Coleoptera/parasitology , Herbivory , Host-Parasite Interactions , Rhabditida/physiology , Animals , Coleoptera/metabolism , Food Chain , Zea mays
9.
Int J Syst Evol Microbiol ; 69(3): 652-661, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30688647

ABSTRACT

Two Gram-negative, rod-shaped, non-spore-forming bacteria, MEX20-17T and MEX47-22T, were isolated from the digestive system of Heterorhabditis atacamensis and Heterorhabditis mexicana entomopathogenic nematodes, respectively. Their 16S rRNA gene sequences suggest that strains MEX20-17T and MEX47-22T belong to the γ-Proteobacteria and to the genus Photorhabdus. Deeper analyses using housekeeping-gene-based and whole-genome-based phylogenetic reconstruction suggest that MEX20-17T is closely related to Photorhabdus khanii and that MEX47-22T is closely related to Photorhabdus luminescens. Sequence similarity scores confirm these observations: MEX20-17T and P. khanii DSM 3369T share 98.9 % nucleotide sequence identity (NSI) of concatenated housekeeping genes, 70.4 % in silico DNA-DNA hybridization (isDDH) and 97 % orthologous average nucleotide identity (orthoANI); and MEX47-22T and P. luminescens ATCC 29999T share 98.9 % NSI, 70.6 % isDDH and 97 % orthoANI. Physiological characterization indicates that both strains differ from all validly described Photorhabdus species and from their more closely related taxa. We therefore propose to classify MEX20-17T and MEXT47-22T as new subspecies within P. khanii and P. luminescens, respectively. Hence, the following names are proposed for these strains: Photorhabdus khanii subsp. guanajuatensis subsp. nov. with the type strain MEX20-17T (=LMG 30372T=CCOS 1191T) and Photorhabdus luminescenssubsp. mexicana subsp. nov. with the type strain MEX47-22T (=LMG 30528T=CCOS 1199T). These propositions automatically create Photorhabdus khanii subsp. khanii subsp. nov. with DSM 3369T as the type strain (currently classified as P. khanii), and Photorhabdus luminescenssubsp. luminescenssubsp. nov. with ATCC 29999T as the type strain (currently classified as P. luminescens).


Subject(s)
Photorhabdus/classification , Phylogeny , Rhabditoidea/microbiology , Animals , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mexico , Nucleic Acid Hybridization , Photorhabdus/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil
10.
Int J Syst Evol Microbiol ; 68(8): 2664-2681, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29877789

ABSTRACT

Bacterial symbionts are crucial for the infectivity and success of entomopathogenic nematodes as biological control agents. The current understanding of the symbiotic relationships is limited by taxonomic uncertainties. Here, we used whole-genome sequencing and traditional techniques to reconstruct the phylogenetic relationships between all described Photorhabdus species and subspecies as well as 11 newly isolated symbiotic bacteria of Heterorhabditis nematodes, including the unreported bacterial partner of H. beicherriana. In silico DNA-DNA hybridization, orthologous average nucleotide identity and nucleotide sequence identity of concatenated housekeeping genes scores were calculated and set into relation with current cut-off values for species delimitation in bacteria. Sequence data were complemented with biochemical and chemotaxonomic markers, and ribosomal protein fingerprinting profiles. This polyphasic approach resolves the ambiguous taxonomy of Photorhabdusand lead to the proposal for the elevation of most of them into a higher taxon and the creation of several new taxa: 15 new species, one of which is newly described: Photorhabdus bodei sp. nov. (type strain LJ24-63T=DSM 105690T=CCOS 1159T) and the other 14 arise through the proposal of elevating already described subspecies to species, and are proposed to be renamed as follows: Photorhabdus asymbioticasubsp. australis as Photorhabdus australis sp. nov., Photorhabdus luminescenssubsp. akhurstii as Photorhabdus akhurstii sp. nov., Photorhabdus luminescenssubsp. caribbeanensis as Photorhabdus caribbeanensis sp. nov., Photorhabdus luminescenssubsp. hainanensis as Photorhabdus hainanensis sp. nov., Photorhabdus luminescenssubsp. kayaii as Photorhabdus kayaii sp. nov., Photorhabdus luminescenssubsp. kleinii as Photorhabdus kleinii sp. nov., Photorhabdus luminescenssubsp. namnaonensis as Photorhabdus namnaonensis sp. nov., Photorhabdus luminescenssubsp. noenieputensis as Photorhabdus noenieputensis sp. nov., Photorhabdus luminescenssubsp.laumondii as Photorhabdus laumondii sp. nov., Photorhabdus temperatasubsp. cinerea as Photorhabdus cinerea sp. nov., Photorhabdus temperatasubsp. khanii as Photorhabdus khanii sp. nov., Photorhabdus temperatasubsp. stackebrandtii as Photorhabdus stackebrandtii sp. nov., Photorhabdus temperatasubsp. tasmaniensis as Photorhabdus tasmaniensis sp. nov., and Photorhabdus temperatasubsp. thracensis as Photorhabdus thracensis sp. nov. In addition, we propose the creation of two new subspecies, one of which arises through the reduction of rank: Photorhabdus laumondii subsp. laumondii comb. nov. (basonym: P. luminescenssubsp. laumondii) and the second one is newly described: Photorhabdus laumondii subsp. clarkei subsp. nov. (type strain BOJ-47T=DSM 105531T=CCOS 1160T). Finally, we propose to emend the description of three species, which results from the proposal of elevating three subspecies to the species status: Photorhabdus asymbiotica, Photorhabdus temperata and Photorhabdus luminescens, formerly classified as Photorhabdus asymbioticasubsp. asymbiotica, Photorhabdus temperatasubsp.temperata and Photorhabdus luminescenssubsp. luminescens, respectively.


Subject(s)
Genome, Bacterial , Photorhabdus/classification , Phylogeny , Rhabditoidea/microbiology , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Photorhabdus/genetics , Sequence Analysis, DNA , Symbiosis
11.
Plant Cell Environ ; 41(4): 797-808, 2018 04.
Article in English | MEDLINE | ID: mdl-29327360

ABSTRACT

Different plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata. Simulated M. sexta attack increased the abundance of root parasitic nematodes in the field and facilitated Meloidogyne incognita reproduction in the glasshouse. Intact jasmonate biosynthesis was found to be required for both effects. Flower counts revealed that the jasmonate-dependent facilitation of nematode infestation following simulated leaf attack reduces the plant's reproductive potential to a greater degree than would be expected from the additive effects of the individual stresses. This work reveals that jasmonates mediate the interaction between a leaf herbivore and root parasitic nematodes and illustrates how plant-mediated interactions can alter plant's reproductive potential. The selection pressure resulting from the demonstrated fitness effects is likely to influence the evolution of plant defense traits in nature.


Subject(s)
Cyclopentanes/metabolism , Herbivory , Nicotiana/physiology , Oxylipins/metabolism , Plant Growth Regulators/metabolism , Plant Roots/parasitology , Tylenchoidea , Animals , Flowers/growth & development , Flowers/physiology , Manduca , Plant Leaves/metabolism , Plant Tumors/parasitology , Reproduction , Signal Transduction , Nicotiana/metabolism , Nicotiana/parasitology
12.
J Integr Plant Biol ; 59(10): 759-771, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28650091

ABSTRACT

Nutrients are distributed unevenly in the soil. Phenotypic plasticity in root growth and proliferation may enable plants to cope with this variation and effectively forage for essential nutrients. However, how micronutrients shape root architecture of plants in their natural environments is poorly understood. We used a combination of field and laboratory-based assays to determine the capacity of Nicotiana attenuata to direct root growth towards localized nutrient patches in its native environment. Plants growing in nature displayed a particular root phenotype consisting of a single primary root and a few long, shallow lateral roots. Analysis of bulk soil surrounding the lateral roots revealed a strong positive correlation between lateral root placement and micronutrient gradients, including copper, iron and zinc. In laboratory assays, the application of localized micronutrient salts close to lateral root tips led to roots bending in the direction of copper and iron. This form of chemotropism was absent in ethylene and jasmonic acid deficient lines, suggesting that it is controlled in part by these two hormones. This work demonstrates that directed root growth underlies foraging behavior, and suggests that chemotropism and micronutrient-guided root placement are important factors that shape root architecture in nature.


Subject(s)
Micronutrients/metabolism , Nicotiana/metabolism , Plant Roots/metabolism , Cyclopentanes/pharmacology , Ethylenes/pharmacology , Oxylipins/pharmacology , Phenotype , Plant Roots/drug effects , Seedlings/drug effects , Seedlings/metabolism , Soil , Nicotiana/drug effects
13.
Ecol Evol ; 7(11): 3703-3712, 2017 06.
Article in English | MEDLINE | ID: mdl-28616167

ABSTRACT

Induced changes in root carbohydrate pools are commonly assumed to determine plant defoliation tolerance to herbivores. However, the regulation and species specificity of these two traits are not well understood. We determined herbivory-induced changes in root carbohydrates and defoliation tolerance in seven different solanaceous plant species and correlated the induced changes in root carbohydrates and defoliation tolerance with jasmonate inducibility. Across species, we observed strong species-specific variation for all measured traits. Closer inspection revealed that the different species fell into two distinct groups: Species with a strong induced jasmonic acid (JA) burst suffered from a reduction in root carbohydrate pools and reduced defoliation tolerance, while species with a weak induced JA burst maintained root carbohydrate pools and tolerated defoliation. Induced JA levels predicted carbohydrate and regrowth responses better than jasmonoyl-L-isoleucine (JA-Ile) levels. Our study shows that induced JA signaling, root carbohydrate responses, and defoliation tolerance are closely linked, but highly species specific, even among closely related species. We propose that defoliation tolerance may evolve rapidly via changes in the plant's defense signaling network.

14.
J Chem Ecol ; 43(2): 120-128, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28084560

ABSTRACT

The outcome of plant-mediated interactions among herbivores from several feeding guilds has been studied intensively. However, our understanding on the effects of nematode root herbivory on leaf miner oviposition behavior and performance remain limited. In this study, we evaluated whether Meloidogyne incognita root herbivory affects Tuta absoluta oviposition preference on Solanum lycopersicum plants and the development of the resulting offspring. To investigate the M. incognita-herbivory induced plant systemic responses that might explain the observed biological effects, we measured photosynthetic rates, leaf trypsin protease inhibitor activities, and analyzed the profile of volatiles emitted by the leaves of root-infested and non-infested plants. We found that T. absoluta females avoided laying eggs on the leaves of root-infested plants, and that root infestation negatively affected the pupation process of T. absoluta. These effects were accompanied by a strong suppression of leaf volatile emissions, a decrease in photosynthetic rates, and an increase in the activity of leaf trypsin protease inhibitors. Our study reveals that root attack by nematodes can shape leaf physiology, and thereby increases plant resistance.


Subject(s)
Herbivory , Host-Parasite Interactions , Moths/physiology , Oviposition , Plant Leaves/parasitology , Solanum/parasitology , Tylenchoidea/physiology , Animals , Feeding Behavior/physiology , Moths/anatomy & histology , Photosynthesis/physiology , Plant Leaves/metabolism , Plant Roots/metabolism , Plant Roots/parasitology , Solanum/metabolism , Trypsin Inhibitors/metabolism , Volatile Organic Compounds/metabolism
15.
Plant Physiol ; 172(1): 521-32, 2016 09.
Article in English | MEDLINE | ID: mdl-27485882

ABSTRACT

Plant responses to herbivore attack are regulated by phytohormonal networks. To date, the role of the auxin indole-3-acetic acid (IAA) in this context is not well understood. We quantified and manipulated the spatiotemporal patterns of IAA accumulation in herbivore-attacked Nicotiana attenuata plants to unravel its role in the regulation of plant secondary metabolism. We found that IAA is strongly, rapidly, and specifically induced by herbivore attack. IAA is elicited by herbivore oral secretions and fatty acid conjugate elicitors and is accompanied by a rapid transcriptional increase of auxin biosynthetic YUCCA-like genes. IAA accumulation starts 30 to 60 s after local induction and peaks within 5 min after induction, thereby preceding the jasmonate (JA) burst. IAA accumulation does not require JA signaling and spreads rapidly from the wound site to systemic tissues. Complementation and transport inhibition experiments reveal that IAA is required for the herbivore-specific, JA-dependent accumulation of anthocyanins and phenolamides in the stems. In contrast, IAA does not affect the accumulation of nicotine or 7-hydroxygeranyllinalool diterpene glycosides in the same tissue. Taken together, our results uncover IAA as a rapid and specific signal that regulates a subset of systemic, JA-dependent secondary metabolites in herbivore-attacked plants.


Subject(s)
Cyclopentanes/metabolism , Herbivory/physiology , Indoleacetic Acids/metabolism , Nicotiana/metabolism , Oxylipins/metabolism , Animals , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Host-Parasite Interactions , Manduca/physiology , Plant Growth Regulators/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/parasitology , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/metabolism , Plant Shoots/parasitology , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/parasitology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Time Factors , Nicotiana/genetics , Nicotiana/parasitology
16.
New Phytol ; 208(2): 519-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26017581

ABSTRACT

Plant invertases are sucrolytic enzymes that are essential for the regulation of carbohydrate metabolism and source-sink relationships. While their activity has been well documented during abiotic and biotic stresses, the role of proteinaceous invertase inhibitors in regulating these changes is unknown. Here, we identify a putative Nicotiana attenuata cell wall invertase inhibitor (NaCWII) which is strongly up-regulated in a jasmonate (JA)-dependent manner following simulated attack by the specialist herbivore Manduca sexta. To understand the role of NaCWII in planta, we silenced its expression by RNA interference and measured changes in primary and secondary metabolism and plant growth following simulated herbivory. NaCWII-silenced plants displayed a stronger depletion of carbohydrates and a reduced capacity to increase secondary metabolite pools relative to their empty vector control counterparts. This coincided with the attenuation of herbivore-induced CWI inhibition and growth suppression characteristic of wild-type plants. Together our findings suggest that NaCWII may act as a regulatory switch located downstream of JA accumulation which fine-tunes the plant's balance between growth and defense metabolism under herbivore attack. Although carbohydrates are not typically viewed as key factors in plant growth and defense, our study shows that interfering with their catabolism strongly influences plant responses to herbivory.


Subject(s)
Cell Wall/metabolism , Herbivory , Manduca/physiology , Nicotiana/growth & development , Nicotiana/parasitology , Plant Proteins/metabolism , Secondary Metabolism , Amino Acid Sequence , Animals , Carbohydrate Metabolism/drug effects , Cell Wall/drug effects , Cloning, Molecular , Cyclopentanes/pharmacology , DNA, Complementary/genetics , Gene Silencing/drug effects , Herbivory/drug effects , Larva/drug effects , Larva/physiology , Manduca/drug effects , Molecular Sequence Data , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , Plant Proteins/chemistry , Secondary Metabolism/drug effects , Nicotiana/cytology , Nicotiana/drug effects , Up-Regulation/drug effects , beta-Fructofuranosidase/antagonists & inhibitors
17.
New Phytol ; 207(1): 91-105, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25704234

ABSTRACT

Jasmonates regulate plant secondary metabolism and herbivore resistance. How they influence primary metabolites and how this may affect herbivore growth and performance are not well understood. We profiled sugars and starch of jasmonate biosynthesis-deficient and jasmonate-insensitive Nicotiana attenuata plants and manipulated leaf carbohydrates through genetic engineering and in vitro complementation to assess how jasmonate-dependent sugar accumulation affects the growth of Manduca sexta caterpillars. We found that jasmonates reduce the constitutive and herbivore-induced concentration of glucose and fructose in the leaves across different developmental stages. Diurnal, jasmonate-dependent inhibition of invertase activity was identified as a likely mechanism for this phenomenon. Contrary to our expectation, both in planta and in vitro approaches showed that the lower sugar concentrations led to increased M. sexta growth. As a consequence, jasmonate-dependent depletion of sugars rendered N. attenuata plants more susceptible to M. sexta attack. In conclusion, jasmonates are important regulators of leaf carbohydrate accumulation and this determines herbivore growth. Jasmonate-dependent resistance is reduced rather than enhanced through the suppression of glucose and fructose concentrations, which may contribute to the evolution of divergent resistance strategies of plants in nature.


Subject(s)
Carbohydrates/deficiency , Cyclopentanes/metabolism , Disease Resistance , Manduca/physiology , Nicotiana/immunology , Nicotiana/parasitology , Oxylipins/metabolism , Plant Diseases/parasitology , Animals , Circadian Rhythm , Fructose/analysis , Genotype , Glucose/analysis , Herbivory , Manduca/growth & development , Plant Diseases/immunology , Plant Leaves/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Ribulose-Bisphosphate Carboxylase/metabolism , Secondary Metabolism , Signal Transduction , Solubility , Nicotiana/genetics , Weight Gain , beta-Fructofuranosidase/metabolism
18.
Plant Cell Environ ; 37(11): 2613-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24762051

ABSTRACT

Upon attack by leaf herbivores, many plants reallocate photoassimilates below ground. However, little is known about how plants respond when the roots themselves come under attack. We investigated induced resource allocation in maize plants that are infested by the larvae Western corn rootworm Diabrotica virgifera virgifera. Using radioactive (11) CO(2), we demonstrate that root-attacked maize plants allocate more new (11) C carbon from source leaves to stems, but not to roots. Reduced meristematic activity and reduced invertase activity in attacked maize root systems are identified as possible drivers of this shoot reallocation response. The increased allocation of photoassimilates to stems is shown to be associated with a marked thickening of these tissues and increased growth of stem-borne crown roots. A strong quantitative correlation between stem thickness and root regrowth across different watering levels suggests that retaining photoassimilates in the shoots may help root-attacked plants to compensate for the loss of belowground tissues. Taken together, our results indicate that induced tolerance may be an important strategy of plants to withstand belowground attack. Furthermore, root herbivore-induced carbon reallocation needs to be taken into account when studying plant-mediated interactions between herbivores.


Subject(s)
Adaptation, Physiological , Carbon/metabolism , Coleoptera/physiology , Herbivory/physiology , Plant Roots/physiology , Zea mays/parasitology , Animals , Biomass , Carbohydrate Metabolism , Meristem/physiology , Plant Roots/growth & development , Plant Shoots/physiology , Plant Stems/physiology , Water , Zea mays/physiology , beta-Fructofuranosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...