Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 68(3): e0112723, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38349159

ABSTRACT

The problems associated with the drugs currently used to treat leishmaniasis, including resistance, toxicity, and the high cost of some formulations, call for the urgent identification of new therapeutic agents with novel modes of action. The aggregated protein dye YAT2150 has been found to be a potent antileishmanial compound, with a half-maximal inhibitory concentration (IC50) of approximately 0.5 µM against promastigote and amastigote stages of Leishmania infantum. The encapsulation in liposomes of YAT2150 significantly improved its in vitro IC50 to 0.37 and 0.19 µM in promastigotes and amastigotes, respectively, and increased the half-maximal cytotoxic concentration in human umbilical vein endothelial cells to >50 µM. YAT2150 became strongly fluorescent when binding intracellular protein deposits in Leishmania cells. This fluorescence pattern aligns with the proposed mode of action of this drug in the malaria parasite Plasmodium falciparum, the inhibition of protein aggregation. In Leishmania major, YAT2150 rapidly reduced ATP levels, suggesting an alternative antileishmanial mechanism. To the best of our knowledge, this first-in-class compound is the only one described so far having significant activity against both Plasmodium and Leishmania, thus being a potential drug for the treatment of co-infections of both parasites.


Subject(s)
Antiprotozoal Agents , Leishmania infantum , Leishmaniasis , Parasites , Animals , Humans , Endothelial Cells , Leishmaniasis/drug therapy , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use
2.
BMC Biol ; 20(1): 197, 2022 10 22.
Article in English | MEDLINE | ID: mdl-36271358

ABSTRACT

BACKGROUND: By 2016, signs of emergence of Plasmodium falciparum resistance to artemisinin and partner drugs were detected in the Greater Mekong Subregion. Recently, the independent evolution of artemisinin resistance has also been reported in Africa and South America. This alarming scenario calls for the urgent development of new antimalarials with novel modes of action. We investigated the interference with protein aggregation, which is potentially toxic for the cell and occurs abundantly in all Plasmodium stages, as a hitherto unexplored drug target in the pathogen. RESULTS: Attempts to exacerbate the P. falciparum proteome's propensity to aggregation by delivering endogenous aggregative peptides to in vitro cultures of this parasite did not significantly affect their growth. In contrast, protein aggregation inhibitors clearly reduced the pathogen's viability. One such compound, the bis(styrylpyridinium) salt YAT2150, exhibited potent antiplasmodial activity with an in vitro IC50 of 90 nM for chloroquine- and artemisinin-resistant lines, arresting asexual blood parasites at the trophozoite stage, as well as interfering with the development of both sexual and hepatic forms of Plasmodium. At its IC50, this compound is a powerful inhibitor of the aggregation of the model amyloid ß peptide fragment 1-40, and it reduces the amount of aggregated proteins in P. falciparum cultures, suggesting that the underlying antimalarial mechanism consists in a generalized impairment of proteostasis in the pathogen. YAT2150 has an easy, rapid, and inexpensive synthesis, and because it fluoresces when it accumulates in its main localization in the Plasmodium cytosol, it is a theranostic agent. CONCLUSIONS: Inhibiting protein aggregation in Plasmodium significantly reduces the parasite's viability in vitro. Since YAT2150 belongs to a novel structural class of antiplasmodials with a mode of action that potentially targets multiple gene products, rapid evolution of resistance to this drug is unlikely to occur, making it a promising compound for the post-artemisinin era.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Plasmodium falciparum , Protein Aggregates , Amyloid beta-Peptides , Proteome , Drug Resistance , Artemisinins/pharmacology , Artemisinins/therapeutic use , Malaria, Falciparum/parasitology , Chloroquine/chemistry , Chloroquine/pharmacology , Chloroquine/therapeutic use
3.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35631371

ABSTRACT

Multitarget anti-Alzheimer agents are the focus of very intensive research. Through a comprehensive bibliometric analysis of the publications in the period 1990-2020, we have identified trends and potential gaps that might guide future directions. We found that: (i) the number of publications boomed by 2011 and continued ascending in 2020; (ii) the linked-pharmacophore strategy was preferred over design approaches based on fusing or merging pharmacophores or privileged structures; (iii) a significant number of in vivo studies, mainly using the scopolamine-induced amnesia mouse model, have been performed, especially since 2017; (iv) China, Italy and Spain are the countries with the largest total number of publications on this topic, whereas Portugal, Spain and Italy are the countries in whose scientific communities this topic has generated greatest interest; (v) acetylcholinesterase, ß-amyloid aggregation, oxidative stress, butyrylcholinesterase, and biometal chelation and the binary combinations thereof have been the most commonly pursued, while combinations based on other key targets, such as tau aggregation, glycogen synthase kinase-3ß, NMDA receptors, and more than 70 other targets have been only marginally considered. These results might allow us to spot new design opportunities based on innovative target combinations to expand and diversify the repertoire of multitarget drug candidates and increase the likelihood of finding effective therapies for this devastating disease.

4.
Eur J Med Chem ; 225: 113779, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34418785

ABSTRACT

Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aß42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead.


Subject(s)
Alzheimer Disease/drug therapy , Aminoquinolines/pharmacology , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Heterocyclic Compounds, 4 or More Rings/pharmacology , Neuroprotective Agents/pharmacology , Alzheimer Disease/metabolism , Aminoquinolines/chemical synthesis , Aminoquinolines/chemistry , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Aspartic Acid Endopeptidases/metabolism , Brain/metabolism , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemistry , Humans , Molecular Dynamics Simulation , Molecular Structure , Neuroprotective Agents/chemical synthesis , Recombinant Proteins/metabolism , Structure-Activity Relationship , tau Proteins/antagonists & inhibitors , tau Proteins/metabolism
5.
Molecules ; 19(2): 1763-74, 2014 Feb 03.
Article in English | MEDLINE | ID: mdl-24496269

ABSTRACT

The scope of the Pauson-Khand reaction (PKR) of internal trifluoromethyl alkynes, previously described with norbornadiene, is expanded to norbornene and ethylene. A thorough structural analysis of the resulting PK adducts has been carried out to unveil that α-trifluoromethylcyclopentenones are preferred in all cases, independently of the electronic properties of the alkyne. The regioselectivity observed with norbornadiene and ethylene is higher than in the case of norbornene.


Subject(s)
Alkynes/chemistry , Hydrocarbons, Fluorinated/chemistry , Crystallography, X-Ray , Ethylenes/chemistry , Molecular Structure , Norbornanes/chemistry , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...