Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 2918, 2018.
Article in English | MEDLINE | ID: mdl-30559730

ABSTRACT

Parasites are key drivers of phytoplankton bloom dynamics and related aquatic ecosystem processes. Yet, the dearth of morphological and molecular information hinders the assessment of their diversity and ecological role. Using single-cell techniques, we characterise morphologically and molecularly, intracellular parasitoids infecting four potentially toxin-producing Pseudo-nitzschia and one Melosira species on the North Atlantic coast. These sequences define two, morphologically indistinguishable clades within the phylum Oomycota, related to the genera of algal parasites Anisolpidium and Olpidiopsis and the diatom parasitoid species Miracula helgolandica. Our morphological data are insufficient to attribute either clade to the still unsequenced genus Ectrogella; hence it is proposed to name the clades OOM_1 and OOM_2. A screening of global databases of the barcode regions V4 and V9 of the 18S rDNA demonstrate the presence of these parasitoids beyond the North Atlantic coastal region. During a biweekly metabarcoding survey (Concarneau Bay, France), reads associated with one sequenced parasitoid coincided with the decline of Cerataulina pelagica bloom, whilst the other parasitoids co-occurred at low abundance with Pseudo-nitzschia. Our data highlight a complex and unexplored diversity of the oomycete parasitoids of diatoms and calls for the investigation of their phenology, evolution, and potential contribution in controlling their host spatial-temporal dynamics.

2.
Appl Environ Microbiol ; 84(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30266725

ABSTRACT

Parasitic Chytridiomycota (chytrids) are ecologically significant in various aquatic ecosystems, notably through their roles in controlling bloom-forming phytoplankton populations and in facilitating the transfer of nutrients from inedible algae to higher trophic levels. The diversity and study of these obligate parasites, while critical to understand the interactions between pathogens and their hosts in the environment, have been hindered by challenges inherent to their isolation and stable long-term maintenance under laboratory conditions. Here, we isolated an obligate chytrid parasite (CCAP 4086/1) on the freshwater bloom-forming diatom Asterionella formosa and characterized its infectious cycle under controlled conditions. Phylogenetic analyses based on 18S, 5.8S, and 28S ribosomal DNAs (rDNAs) revealed that this strain belongs to the recently described clade SW-I within the Lobulomycetales. All morphological features observed agree with the description of the known Asterionella parasite Zygorhizidium affluens Canter. We thus provide a phylogenetic placement for this chytrid and present a robust and simple assay that assesses both the infection success and the viability of the host. We also validate a cryopreservation method for stable and cost-effective long-term storage and demonstrate its recovery after thawing. All the above-mentioned tools establish a new gold standard for the isolation and long-term preservation of parasitic aquatic chytrids, thus opening new perspectives to investigate the diversity of these organisms and their physiology in a controlled laboratory environment.IMPORTANCE Despite their ecological relevance, parasitic aquatic chytrids are understudied, especially due to the challenges associated with their isolation and maintenance in culture. Here we isolated and established a culture of a chytrid parasite infecting the bloom-forming freshwater diatom Asterionella formosa The chytrid morphology suggests that it corresponds to the Asterionella parasite known as Zygorhizidium affluens The phylogenetic reconstruction in the present study supports the hypothesis that our Z. affluens isolate belongs to the order Lobulomycetales and clusters within the novel clade SW-I. We also validate a cryopreservation method for stable and cost-effective long-term storage of parasitic chytrids of phytoplankton. The establishment of a monoclonal pathosystem in culture and its successful cryopreservation opens the way to further investigate this ecologically relevant parasitic interaction.


Subject(s)
Chytridiomycota/classification , Chytridiomycota/isolation & purification , Cryopreservation/methods , Diatoms/microbiology , Chytridiomycota/genetics , Chytridiomycota/pathogenicity , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Phylogeny , RNA, Ribosomal, 28S/genetics , Taiwan , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...