Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Int J Mol Sci ; 24(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37240195

ABSTRACT

In recent years, new therapies have been developed based on molecules that target molecular mechanisms involved in both the initiation and maintenance of the oncogenic process. Among these molecules are the poly(ADP-ribose) polymerase 1 (PARP1) inhibitors. PARP1 has emerged as a target with great therapeutic potential for some tumor types, drawing attention to this enzyme and resulting in many small molecule inhibitors of its enzymatic activity. Therefore, many PARP inhibitors are currently in clinical trials for the treatment of homologous recombination (HR)-deficient tumors, BRCA-related cancers, taking advantage of synthetic lethality. In addition, several novel cellular functions unrelated to its role in DNA repair have been described, including post-translational modification of transcription factors, or acting through protein-protein interactions as a co-activator or co-repressor of transcription. Previously, we reported that this enzyme may play a key role as a transcriptional co-activator of an important component of cell cycle regulation, the transcription factor E2F1. Here, we show that PARP inhibitors, which interfere with its activity in cell cycle regulation, perform this without affecting its enzymatic function.


Subject(s)
Neoplasms , Poly(ADP-ribose) Polymerases , Humans , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly (ADP-Ribose) Polymerase-1/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , DNA Repair , Transcription Factors/genetics
2.
Front Endocrinol (Lausanne) ; 14: 1093376, 2023.
Article in English | MEDLINE | ID: mdl-36967809

ABSTRACT

Thermal homeostasis is a fundamental process in mammals, which allows the maintenance of a constant internal body temperature to ensure an efficient function of cells despite changes in ambient temperature. Increasing evidence has revealed the great impact of thermoregulation on energy homeostasis. Homeothermy requires a fine regulation of food intake, heat production, conservation and dissipation and energy expenditure. A great interest on this field of research has re-emerged following the discovery of thermogenic brown adipose tissue and browning of white fat in adult humans, with a potential clinical relevance on obesity and metabolic comorbidities. However, most of our knowledge comes from male animal models or men, which introduces unwanted biases on the findings. In this review, we discuss how differences in sex-dependent characteristics (anthropometry, body composition, hormonal regulation, and other sexual factors) influence numerous aspects of thermal regulation, which impact on energy homeostasis. Individuals of both sexes should be used in the experimental paradigms, considering the ovarian cycles and sexual hormonal regulation as influential factors in these studies. Only by collecting data in both sexes on molecular, functional, and clinical aspects, we will be able to establish in a rigorous way the real impact of thermoregulation on energy homeostasis, opening new avenues in the understanding and treatment of obesity and metabolic associated diseases.


Subject(s)
Body Temperature Regulation , Sex Characteristics , Animals , Male , Female , Humans , Homeostasis , Obesity/therapy , Mammals
3.
Acta Physiol (Oxf) ; 237(3): e13896, 2023 03.
Article in English | MEDLINE | ID: mdl-36251565

ABSTRACT

AIM: Physiological functions in mammals show circadian oscillations, synchronized by daily cycles of light and temperature. Central and peripheral clocks participate in this regulation. Since the ion channel TRPM8 is a critical cold sensor, we investigated its role in circadian function. METHODS: We used TRPM8 reporter mouse lines and TRPM8-deficient mice. mRNA levels were determined by in situ hybridization or RT-qPCR and protein levels by immunofluorescence. A telemetry system was used to measure core body temperature (Tc). RESULTS: TRPM8 is expressed in the retina, specifically in cholinergic amacrine interneurons and in a subset of melanopsin-positive ganglion cells which project to the central pacemaker, the suprachiasmatic nucleus (SCN) of the hypothalamus. TRPM8-positive fibres were also found innervating choroid and ciliary body vasculature, with a putative function in intraocular temperature, as shown in TRPM8-deficient mice. Interestingly, Trpm8-/- animals displayed increased expression of the clock gene Per2 and vasopressin (AVP) in the SCN, suggesting a regulatory role of TRPM8 on the central oscillator. Since SCN AVP neurons control body temperature, we studied Tc in driven and free-running conditions. TRPM8-deficiency increased the amplitude of Tc oscillations and, under dim constant light, induced a greater phase delay and instability of Tc rhythmicity. Finally, TRPM8-positive fibres innervate peripheral organs, like liver and white adipose tissue. Notably, Trpm8-/- mice displayed a dysregulated expression of Per2 mRNA in these metabolic tissues. CONCLUSION: Our findings support a function of TRPM8 as a temperature sensor involved in the regulation of central and peripheral clocks and the circadian control of Tc.


Subject(s)
Circadian Rhythm , TRPM Cation Channels , Mice , Animals , Circadian Rhythm/physiology , Body Temperature/physiology , Suprachiasmatic Nucleus/metabolism , Ion Channels/metabolism , Mammals , RNA, Messenger/metabolism , TRPM Cation Channels/metabolism
6.
J Cell Physiol ; 236(11): 7390-7404, 2021 11.
Article in English | MEDLINE | ID: mdl-33959982

ABSTRACT

Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.


Subject(s)
Brain Neoplasms/metabolism , Cell Transformation, Neoplastic/metabolism , Glioblastoma/metabolism , Neural Stem Cells/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Transformed , Cell Proliferation , Cell Transformation, Neoplastic/pathology , Glioblastoma/pathology , Male , Mice, Inbred C57BL , Neoplasm Metastasis , Neural Stem Cells/pathology , Phenotype , Tumor Burden
8.
Front Cell Infect Microbiol ; 11: 770668, 2021.
Article in English | MEDLINE | ID: mdl-35223533

ABSTRACT

Although clustering by operational taxonomic units (OTUs) is widely used in the oral microbial literature, no research has specifically evaluated the extent of the limitations of this sequence clustering-based method in the oral microbiome. Consequently, our objectives were to: 1) evaluate in-silico the coverage of a set of previously selected primer pairs to detect oral species having 16S rRNA sequence segments with ≥97% similarity; 2) describe oral species with highly similar sequence segments and determine whether they belong to distinct genera or other higher taxonomic ranks. Thirty-nine primer pairs were employed to obtain the in-silico amplicons from the complete genomes of 186 bacterial and 135 archaeal species. Each fasta file for the same primer pair was inserted as subject and query in BLASTN for obtaining the similarity percentage between amplicons belonging to different oral species. Amplicons with 100% alignment coverage of the query sequences and with an amplicon similarity value ≥97% (ASI97) were selected. For each primer, the species coverage with no ASI97 (SC-NASI97) was calculated. Based on the SC-NASI97 parameter, the best primer pairs were OP_F053-KP_R020 for bacteria (region V1-V3; primer pair position for Escherichia coli J01859.1: 9-356); KP_F018-KP_R002 for archaea (V4; undefined-532); and OP_F114-KP_R031 for both (V3-V5; 340-801). Around 80% of the oral-bacteria and oral-archaea species analyzed had an ASI97 with at least one other species. These very similar species play different roles in the oral microbiota and belong to bacterial genera such as Campylobacter, Rothia, Streptococcus and Tannerella, and archaeal genera such as Halovivax, Methanosarcina and Methanosalsum. Moreover, ~20% and ~30% of these two-by-two similarity relationships were established between species from different bacterial and archaeal genera, respectively. Even taxa from distinct families, orders, and classes could be grouped in the same possible OTU. Consequently, regardless of the primer pair used, sequence clustering with a 97% similarity provides an inaccurate description of oral-bacterial and oral-archaeal species, which can greatly affect microbial diversity parameters. As a result, OTU clustering conditions the credibility of associations between some oral species and certain health and disease conditions. This significantly limits the comparability of the microbial diversity findings reported in oral microbiome literature.


Subject(s)
Microbiota , Archaea/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods
9.
Cancers (Basel) ; 12(10)2020 Oct 10.
Article in English | MEDLINE | ID: mdl-33050515

ABSTRACT

In recent years, poly (ADP-ribose) polymerase (PARP) inhibitors have been evaluated for treating homologous recombination-deficient tumours, taking advantage of synthetic lethality. However, increasing evidence indicates that PARP1 exert several cellular functions unrelated with their role on DNA repair, including function as a co-activator of transcription through protein-protein interaction with E2F1. Since the RB/E2F1 pathway is among the most frequently mutated in many tumour types, we investigated whether the absence of PARP activity could counteract the consequences of E2F1 hyperactivation. Our results demonstrate that genetic ablation of Parp1 extends the survival of Rb-null embryos, while genetic inactivation of Parp1 results in reduced development of pRb-dependent tumours. Our results demonstrate that PARP1 plays a key role as a transcriptional co-activator of the transcription factor E2F1, an important component of the cell cycle regulation. Considering that most oncogenic processes are associated with cell cycle deregulation, the disruption of this PARP1-E2F1 interaction could provide a new therapeutic target of great interest and a wide spectrum of indications.

10.
Dev Dyn ; 249(1): 112-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31412150

ABSTRACT

BACKGROUND: Neural stem cells (NSC) have been extensively used as a tool to investigate the mechanisms responsible for neural repair, and they have been also considered as the source for a series of promising replacement therapies in various neurodegenerative diseases. However, their use is limited by their relative rarity and anatomical localization, and also because, the methods for isolation and characterization are usually time consuming and have some technical limitations. RESULTS: In this study, we describe a resource and method for obtaining immortalized cells with NSC characteristics obtained from mouse brain embryo. CONCLUSIONS: Because these cells can be maintained indefinitely in culture, they may constitute a permanent source of NSC that can be used for research studies on neural development and regeneration.


Subject(s)
Brain/embryology , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , Brain/cytology , Brain/metabolism , Embryo, Mammalian/metabolism , Mice , Neurodegenerative Diseases/metabolism
11.
J Cell Physiol ; 234(5): 7236-7246, 2019 05.
Article in English | MEDLINE | ID: mdl-30370618

ABSTRACT

Myostatin is a member of the transforming growth factor ß (TGFß) superfamily that has a well-established role as a mediator of muscle growth and development. However, myostatin is now emerging as a pleiotropic hormone with multiple actions in the regulation of the metabolism as well as several aspects of both cardiac and smooth muscle cells physiology. In addition, myostatin is also expressed in several nonmuscular cells where its physiological role remains to be elucidated in most cases. In this report, we have shown that both myostatin and its receptor system are expressed in blood cells and in hematopoietic cell lines. Furthermore, myostatin treatment promotes differentiation of both HL60 and K562 cells through a mechanism that involves activation of extracellular signal-regulated kinases 1/2 and p38-mitogen-activated protein kinase, thus leading to the possibility that myostatin may be a paracrine/autocrine factor involved in the control of haematopoiesis. In addition, the presence of myostatin expression in immune cells could envisage a novel role for the hormone in the pathogenesis of inflammatory diseases.


Subject(s)
Autocrine Communication , Blood Cells/metabolism , Hematopoiesis , Myostatin/metabolism , Paracrine Communication , Adult , Cell Survival , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , HL-60 Cells , Humans , Jurkat Cells , K562 Cells , Male , Myositis/blood , Myositis/metabolism , Myostatin/genetics , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism
12.
J Neurosci ; 38(15): 3643-3656, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29530988

ABSTRACT

The coupling of energy homeostasis to thermoregulation is essential to maintain homeothermy in changing external environments. We studied the role of the cold thermoreceptor TRPM8 in this interplay in mice of both sexes. We demonstrate that TRPM8 is required for a precise thermoregulation in response to cold, in fed and fasting. Trpm8-/- mice exhibited a fall of 0.7°C in core body temperature when housed at cold temperatures, and a deep hypothermia (<30°C) during food deprivation. In both situations, TRPM8 deficiency induced an increase in tail heat loss. This, together with the presence of TRPM8-sensory fibers innervating the main tail vessels, unveils a major role of this ion channel in tail vasomotor regulation. Finally, TRPM8 deficiency had a remarkable impact on energy balance. Trpm8-/- mice raised at mild cold temperatures developed late-onset obesity and metabolic dysfunction, with daytime hyperphagia and reduction of fat oxidation as plausible causal factors. In conclusion, TRPM8 fine-tunes eating behavior and fuel utilization during thermoregulatory adjustments to mild cold. Persistent imbalances in these responses result in obesity.SIGNIFICANCE STATEMENT The thermosensitive ion channel TRPM8 is required for a precise thermoregulatory response to cold and fasting, playing an important role in tail vasoconstriction, and therefore heat conservation, as well as in the regulation of ingestive behavior and metabolic fuel selection upon cooling. Indeed, TRPM8-deficient mice, housed in a mild cold environment, displayed an increase in tail heat loss and lower core body temperature, associated with the development of late-onset obesity with glucose and lipid metabolic dysfunction. A persistent diurnal hyperphagia and reduced fat oxidation constitute plausible underlying mechanisms in the background of a deficient thermoregulatory adjustment to mild cold ambient temperatures.


Subject(s)
Body Temperature Regulation , Hyperphagia/genetics , Obesity/genetics , TRPM Cation Channels/genetics , Animals , Eating , Energy Metabolism , Gene Deletion , Hyperphagia/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Tail/blood supply
13.
Ther Adv Cardiovasc Dis ; 12(2): 53-72, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29271292

ABSTRACT

Revascularization for chronic limb-threatening ischemia (CLTI) is necessary to alleviate symptoms and wound healing. When it fails or is not possible, there are few alternatives to avoid limb amputation in these patients. Although experimental studies with stem cells and growth factors have shown promise, clinical trials have demonstrated inconsistent results because CLTI patients generally need arteriogenesis rather than angiogenesis. Moreover, in addition to the perfusion of the limb, there is the need to improve the neuropathic response for wound healing, especially in diabetic patients. Growth hormone (GH) is a pleiotropic hormone capable of boosting the aforementioned processes and adds special benefits for the redox balance. This hormone has the potential to mitigate symptoms in ischemic patients with no other options and improves the cardiovascular complications associated with the disease. Here, we discuss the pros and cons of using GH in such patients, focus on its effects on peripheral arteries, and analyze the possible benefits of treating CLTI with this hormone.


Subject(s)
Angiogenesis Inducing Agents/therapeutic use , Human Growth Hormone/therapeutic use , Ischemia/drug therapy , Limb Salvage/methods , Lower Extremity/blood supply , Neovascularization, Physiologic/drug effects , Peripheral Arterial Disease/drug therapy , Wound Healing/drug effects , Angiogenesis Inducing Agents/adverse effects , Animals , Chronic Disease , Computed Tomography Angiography , Human Growth Hormone/adverse effects , Humans , Ischemia/diagnostic imaging , Ischemia/physiopathology , Limb Salvage/adverse effects , Peripheral Arterial Disease/diagnostic imaging , Peripheral Arterial Disease/physiopathology , Regional Blood Flow , Treatment Outcome
14.
Sci Rep ; 7(1): 12991, 2017 10 11.
Article in English | MEDLINE | ID: mdl-29021613

ABSTRACT

Oncogene-induced senescence (OIS) is a complex process, in which activation of oncogenic signals during early tumorigenesis results in a high degree of DNA replication stress. The ensuing response to the DNA damage produces a permanent G1 arrest that prevents unlimited cell proliferation and lessens the development of tumours. However, despite the role of OIS in the proliferative arrest resulting from an activating oncogenic-lesion has obtained wide support, there is also evidence indicating that cells may overcome oncogene-induced senescence under some circumstances. In this study, we have investigated the possibility that some of the assumptions on the role of DNA damage response (DDR) in triggering OIS may depend on the fact that most of the available data were obtained in mouse embryo fibroblast. By comparing the degree of OIS observed in mouse embryo fibroblasts (MEF) and mouse embryo astrocytes (MEA) obtained from the same individuals we have demonstrated that, despite truthful activation of DDR in both cell types, significant levels of OIS were only detected in MEF. Therefore, this uncoupling between OIS and DDR observed in astrocytes supports the intriguingly possibility that OIS is not a widespread response mechanism to DDR.


Subject(s)
Astrocytes/cytology , Astrocytes/metabolism , Cellular Senescence/genetics , DNA Damage , DNA Replication , Embryo, Mammalian/cytology , Oncogenes , Animals , Cells, Cultured , Mice , Proto-Oncogene Proteins p21(ras)/metabolism
15.
Int J Mol Sci ; 18(6)2017 Jun 16.
Article in English | MEDLINE | ID: mdl-28621713

ABSTRACT

This study was designed to investigate a possible role of the N-terminal tripeptide of insulin-like growth factor-1 (IGF-I), Gly-Pro-Glu (GPE), physiologically generated in neurons following IGF-I-specific cleavage, in promoting neural regeneration after an injury. Primary cultures of mouse neural stem cells (NSCs), obtained from 13.5 Days post-conception (dpc) mouse embryos, were challenged with either GPE, growth hormone (GH), or GPE + GH and the effects on cell proliferation, migration, and survival were evaluated both under basal conditions and in response to a wound healing assay. The cellular pathways activated by GPE were also investigated by using specific chemical inhibitors. The results of the study indicate that GPE treatment promotes the proliferation and the migration of neural stem cells in vitro through a mechanism that involves the activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase PI3K-Akt pathways. Intriguingly, both GPE effects and the signaling pathways activated were similar to those observed after GH treatment. Based upon the results obtained from this study, GPE, as well as GH, may be useful in promoting neural protection and/or regeneration after an injury.


Subject(s)
Cell Movement , Cell Proliferation , Neural Stem Cells/cytology , Oligopeptides/metabolism , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Growth Hormone/metabolism , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neurogenesis , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
16.
Int J Med Educ ; 6: 65-75, 2015 Jun 08.
Article in English | MEDLINE | ID: mdl-26057355

ABSTRACT

OBJECTIVE: The purpose of this study was to investigate student's perceptions of Educational Climate (EC) in Spanish medical schools, comparing various aspects of EC between the 2nd (preclinical) and the 4th (clinical) years to detect strengths and weaknesses in the on-going curricular reform. METHODS: This study utilized a cross-sectional design and employed the Spanish version of the "Dundee Ready Education Environment Measure" (DREEM). The survey involved 894 2nd year students and 619 4th year students from five Spanish medical schools. RESULTS: The global average score of 2nd year students from the five medical schools was found to be significantly higher (116.2±24.9, 58.2% of maximum score) than that observed in 4th year students (104.8±29.5, 52.4% of maximum score). When the results in each medical school were analysed separately, the scores obtained in the 2nd year were almost always significantly higher than in the 4th year for all medical schools, in both the global scales and the different subscales. CONCLUSIONS: The perception of the EC by 2nd and 4th year students from five Spanish medical schools is more positive than negative although it is significantly lower in the 4th year. In both years, although more evident in the 4th year, students point out the existence of several important "problematic educational areas" associated with the persistence of traditional curricula and teaching methodologies. Our findings of this study should lead medical schools to make a serious reflection and drive the implementation of the necessary changes required to improve teaching, especially during the clinical period.


Subject(s)
Education, Medical, Graduate , Education, Medical, Undergraduate , Perception , Schools, Medical , Students, Medical/psychology , Adult , Cross-Sectional Studies , Curriculum/standards , Female , Humans , Male , Quality Control , Schools, Medical/organization & administration , Schools, Medical/standards , Spain/epidemiology , Students, Medical/statistics & numerical data , Surveys and Questionnaires , Young Adult
17.
BMC Neurosci ; 15: 100, 2014 Aug 26.
Article in English | MEDLINE | ID: mdl-25156632

ABSTRACT

BACKGROUND: Accumulating evidence suggests that growth hormone (GH) may play a major role in the regulation of postnatal neurogenesis, thus supporting the possibility that it may be also involved in promoting brain repair after brain injury. In order to gain further insight on this possibility, in this study we have investigated the pathways signaling the effect of GH treatment on the proliferation and survival of hippocampal subgranular zone (SGZ)-derived neurospheres. RESULTS: Our results demonstrate that GH treatment promotes both proliferation and survival of SGZ neurospheres. By using specific chemical inhibitors we have been also able to demonstrate that GH treatment promotes the activation of both Akt-mTOR and JNK signaling pathways, while blockade of these pathways either reduces or abolishes the GH effects. In contrast, no effect of GH on the activation of the Ras-ERK pathway was observed after GH treatment, despite blockade of this signaling path also resulted in a significant reduction of GH effects. Interestingly, SGZ cells were also capable of producing GH, and blockade of endogenous GH also resulted in a decrease in the proliferation and survival of SGZ neurospheres. CONCLUSIONS: Altogether, our findings suggest that GH treatment may promote the proliferation and survival of neural progenitors. This effect may be elicited by cooperating with locally-produced GH in order to increase the response of neural progenitors to adequate stimuli. On this view, the possibility of using GH treatment to promote neurogenesis and cell survival in some acquired neural injuries may be envisaged.


Subject(s)
Cell Proliferation/physiology , Cell Survival/physiology , Growth Hormone/metabolism , Hippocampus/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Animals , Apoptosis/drug effects , Apoptosis/physiology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/metabolism , Growth Hormone/antagonists & inhibitors , Hippocampus/drug effects , Humans , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , ras Proteins/antagonists & inhibitors , ras Proteins/metabolism
18.
Cell Physiol Biochem ; 32(1): 111-20, 2013.
Article in English | MEDLINE | ID: mdl-23868143

ABSTRACT

BACKGROUND: Fas/CD95 is the best-studied member of the death receptor (DR) superfamily in the central nervous system where it can trigger cellular responses other than apoptosis, including the promotion of neurogenesis and neuritogenesis, stimulation of the progression of gliomas, and regulation of the immune response of astrocytes. METHODS: We have investigated the role of Fas/CD95 in the regulation of the proliferation of fetal astrocytes in vitro, as well as the signalling pathways involved. RESULTS: Fas/CD95 ligation stimulated the proliferation of primary fetal astrocytes, through a mechanism that depends on the activation of caspase 8 and subsequent phosphorylation of extracellular signal regulated kinase (ERK). Interestingly this proliferative effect is only observed with a low dose of the Fas/CD95 agonist. In contrast, when primary astrocytes are challenged with a high dose of the Fas/CD95 agonist significant cell death occurs. CONCLUSIONS: Our findings support that, besides its effects on cell survival, Fas/CD95 may play a complex and prominent role in the regulation of astrocyte proliferation during development.


Subject(s)
Astrocytes/cytology , Caspase 8/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , fas Receptor/metabolism , Animals , Astrocytes/metabolism , Cell Proliferation , Cells, Cultured , Female , Fetus/cytology , Phosphorylation , Rats , Rats, Sprague-Dawley , Signal Transduction , fas Receptor/agonists
19.
Neurosci Res ; 76(4): 179-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23602740

ABSTRACT

Growth hormone (GH) is a pleiotropic hormone that exerts important functions in the control of brain development as well as in the regulation neuronal differentiation and function, together with several behavioral and psychological effects that have been linked to its modulatory actions on brain neurotransmitters. In addition, the possibility that GH may play a role on brain repair after injury has been also envisaged, and a number of reports have shown that GH administration following injury confers neuroprotection and accelerates the recovery of some neural functions. In this review we have analyzed the state of the art of GH administration in several neural diseases. Though more studies are still necessary in order to completely understand the importance of GH in these processes, the promising results obtained so far, together with the absence of untoward effects during GH therapy, encourages the development of clinical assays in order to further support the use GH treatment in neural diseases in which neuroprotection and/or neuroregeneration are involved.


Subject(s)
Brain Injuries/drug therapy , Growth Hormone/therapeutic use , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Animals , Cognition/drug effects , Humans , Nerve Regeneration
20.
J. physiol. biochem ; 69(1): 15-23, mar. 2013.
Article in English | IBECS | ID: ibc-121983

ABSTRACT

Confusing results have been reported regarding the influence of nutritional status on myostatin levels. Some studies indicate that short-term fasting results in increased myostatin mRNA levels in skeletal muscle, evident in several species. In contrast, other studies have demonstrated either a decrease or no change in myostatin levels during fasting. In the present study, we investigated the effect of different patterns of food deprivation on muscle myostatin expression in both newborn and adult rats. Adjustment of litter size in neonatal rats is a well-established model to study the effect of early overfeeding or underfeeding on body composition and in this study resulted in modifications in the pattern of muscle myostatin expression. Rat pups growing in large litters (22–24 newborns) showed a decrease in muscle myostatin mRNA and protein levels at 24 days of age. Interestingly, these effects were maintained at 60 days of age despite rats having free access to food since weaning, thus suggesting that changes in myostatin expression induced by neonatal reduction of food intake are long-lasting. In contrast, no changes in myostatin mRNA levels were observed in adult rats when food intake was decreased during 7 days by either food restriction or central leptin treatment. Similar results were obtained when food restriction was maintained in adult rats for a longer period (7 weeks), despite significant muscle loss. Overall, these data suggest that myostatin gene expression is programmed by nutritional status in neonatal life (AU)


Subject(s)
Animals , Rats , Myostatin , Fetal Development/physiology , Malnutrition/physiopathology , Nutritional Status , RNA, Messenger/analysis , Muscle, Skeletal/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...