Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant Pathol ; 24(10): 1300-1311, 2023 10.
Article in English | MEDLINE | ID: mdl-37403515

ABSTRACT

The nonstructural protein NSm of tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant of the tomato single dominant Sw-5 resistance gene. Although Sw-5 effectiveness has been shown for most TSWV isolates, the emergence of resistance-breaking (RB) isolates has been observed. It is strongly associated with two point mutations (C118Y or T120N) in the NSm viral protein. TSWV-like symptoms were observed in tomato crop cultivars (+Sw-5) in the Baja California peninsula, Mexico, and molecular methods confirmed the presence of TSWV. Sequence analysis of the NSm 118-120 motif and three-dimensional protein modelling exhibited a noncanonical C118F substitution in seven isolates, suggesting that this substitution could emulate the C118Y-related RB phenotype. Furthermore, phylogenetic and molecular analysis of the full-length genome (TSWV-MX) revealed its reassortment-related evolution and confirmed that putative RB-related features are restricted to the NSm protein. Biological and mutational NSm 118 residue assays in tomato (+Sw-5) confirmed the RB nature of TSWV-MX isolate, and the F118 residue plays a critical role in the RB phenotype. The discovery of a novel TSWV-RB Mexican isolate with the presence of C118F substitution highlights a not previously described viral adaptation in the genus Orthotospovirus, and hence, the necessity of further crop monitoring to alert the establishment of novel RB isolates in cultivated tomatoes.


Subject(s)
Solanum lycopersicum , Tospovirus , Tospovirus/genetics , Phylogeny , Mexico , Mutation/genetics , Plant Diseases
2.
Plants (Basel) ; 12(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903899

ABSTRACT

Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.

3.
Microorganisms ; 8(4)2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32272632

ABSTRACT

Nowadays, Huanglongbing (HLB) disease, associated with Candidatus Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host-pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited. In this work, we have obtained an RNA-seq-based differential expression profile of Mexican lime plants challenged against CLas infection, at both asymptomatic and symptomatic stages. Typical HLB-responsive differentially expressed genes (DEGs) are involved in photosynthesis, secondary metabolism, and phytohormone homeostasis. Enrichment of DEGs associated with biotic response showed that genes related to cell wall, secondary metabolism, transcription factors, signaling, and redox reactions could play a role in the tolerance of Mexican lime against CLas infection. Interestingly, despite some concordance observed between transcriptional responses of different tolerant citrus species, a subset of DEGs appeared to be species-specific. Our data highlights the importance of studying the host response during HLB disease using as model tolerant citrus species, in order to design new and opportune diagnostic and management methods.

4.
Data Brief ; 29: 105198, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071978

ABSTRACT

Mexican lime (Citrus aurantifolia) belongs to the Rutaceae family and nowadays is one of the major commercial citrus crops in different countries. In Mexico, Mexican lime production is impaired by Huanglongbing (HLB) disease associated to Candidatus Liberibacter asiaticus (CLas) bacteria. To date, transcriptomic studies of CLas-Citrus interaction, have been performed mainly in sweet citrus models at symptomatic (early) stage where pleiotropic responses could mask important, pathogen-driven host modulation as well as, host antibacterial responses. Additionally, well-assembled reference transcriptomes for acid limes including C. aurantifolia are not available. The development of improved transcriptomic resources for CLas-citrus pathosystem, including both asymptomatic (early) and symptomatic (late) stages, could accelerate the understanding of the disease. Here, we provide the first transcriptomic analysis from healthy and HLB-infected C. aurantifolia leaves at both asymptomatic and symptomatic stages, using a RNA-seq approach in the Illumina NexSeq500 platform. The construction of the assembled transcriptome was conducted using the predesigned workflow Transflow and a total of 41,522 tentative transcripts (TTs) obtained. These C. aurantifolia TTs were functionally annotated using TAIR10 and UniProtKB databases. All raw reads were deposited in the NCBI SRA with accession numbers SRR10353556, SRR10353558, SRR10353560 and SRR10353562. Overall, this dataset adds new transcriptomic valuable tools for future breeding programs, will allow the design of novel diagnostic molecular markers, and will be an essential tool for studying the HLB disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...