Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Dis Aquat Organ ; 151: 51-60, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36106716

ABSTRACT

Kudoa inornata is a myxosporean that infects the seatrout Cynoscion nebulosus. Increased prevalence of infection as fish age and absence of inflammation against plasmodia led to the hypothesis that seatrout retain and accumulate myxospores throughout their lives. However, opportunistic observations that wild-caught seatrout cleared infection when maintained in aquaculture conditions and evidence of encapsulated infected necrotic myofibers suggested that fish develop an immunity against this parasite, or that myxospores have a limited life span. To evaluate myxospore clearance and to test putative resistance to re-infection, we examined 44 wild-caught seatrout broodstock maintained in parasite-free water for 2-6 yr. Twenty-five fish served as negative controls (time zero of experiment), and 19 were exposed to water-borne K. inornata infective stages for 18 wk. Over 73% of the exposed fish became infected, compared to ~12% of control fish, indicating that fish were susceptible to re-infection by K. inornata. Whether plasmodia degenerate because K. inornata myxospores have a limited life span or seatrout develop an adaptive immunity against these life stages remains unknown. To test for accumulation of myxospores over time, we compared myxospore densities and intensities between sexes and across ages and sizes of wild seatrout. There was no significant difference in myxospore densities with size, age, or sex. However, intensities increased significantly with increasing fish age and size, indicating accrual of myxospores over time. These results combined with evidence of infection clearance suggest that K. inornata myxospores do not persist but nevertheless accrue in wild seatrout due to continuous contact with infective stages.


Subject(s)
Cnidaria , Fish Diseases , Myxozoa , Perciformes , Animals , Fish Diseases/parasitology , Perciformes/parasitology , Reinfection/veterinary , Trout , Water
2.
Med Phys ; 45(2): 934-942, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29206288

ABSTRACT

PURPOSE: Radiopaque microspheres may provide intraprocedural and postprocedural feedback during transarterial radioembolization (TARE). Furthermore, the potential to use higher resolution x-ray imaging techniques as opposed to nuclear medicine imaging suggests that significant improvements in the accuracy and precision of radiation dosimetry calculations could be realized for this type of therapy. This study investigates the absorbed dose kernel for novel radiopaque microspheres including contributions of both short and long-lived contaminant radionuclides while concurrently quantifying the self-shielding of the glass network. METHODS: Monte Carlo simulations using EGSnrc were performed to determine the dose kernels for all monoenergetic electron emissions and all beta spectra for radionuclides reported in a neutron activation study of the microspheres. Simulations were benchmarked against an accepted 90 Y dose point kernel. Self-shielding was quantified for the microspheres by simulating an isotropically emitting, uniformly distributed source, in glass and in water. The ratio of the absorbed doses was scored as a function of distance from a microsphere. The absorbed dose kernel for the microspheres was calculated for (a) two bead formulations following (b) two different durations of neutron activation, at (c) various time points following activation. RESULTS: Self-shielding varies with time postremoval from the reactor. At early time points, it is less pronounced due to the higher energies of the emissions. It is on the order of 0.4-2.8% at a radial distance of 5.43 mm with increased size from 10 to 50 µm in diameter during the time that the microspheres would be administered to a patient. At long time points, self-shielding is more pronounced and can reach values in excess of 20% near the end of the range of the emissions. Absorbed dose kernels for 90 Y, 90m Y, 85m Sr, 85 Sr, 87m Sr, 89 Sr, 70 Ga, 72 Ga, and 31 Si are presented and used to determine an overall kernel for the microspheres based on weighted activities. The shapes of the absorbed dose kernels are dominated at short times postactivation by the contributions of 70 Ga and 72 Ga. Following decay of the short-lived contaminants, the absorbed dose kernel is effectively that of 90 Y. After approximately 1000 h postactivation, the contributions of 85 Sr and 89 Sr become increasingly dominant, though the absorbed dose-rate around the beads drops by roughly four orders of magnitude. CONCLUSIONS: The introduction of high atomic number elements for the purpose of increasing radiopacity necessarily leads to the production of radionuclides other than 90 Y in the microspheres. Most of the radionuclides in this study are short-lived and are likely not of any significant concern for this therapeutic agent. The presence of small quantities of longer lived radionuclides will change the shape of the absorbed dose kernel around a microsphere at long time points postadministration when activity levels are significantly reduced.


Subject(s)
Arteries , Embolization, Therapeutic/methods , Glass , Microspheres , Radiation Protection , Embolization, Therapeutic/adverse effects , Monte Carlo Method , Optical Phenomena , Radiometry , Radiotherapy Dosage
3.
Appl Radiat Isot ; 132: 129-134, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29220726

ABSTRACT

A simple geometry is used to compare several of the available Monte Carlo software codes for radiation transport. EGSnrc, Geant4 and MCNP5 are all used to calculate the photon fluence produced from electrons incident on a copper target. Four energies for the isotropic point source are chosen to simulate the average and maximum emission energies of 32P and 90Y: (0.7, 1.71)MeV and (0.93, 2.28)MeV, respectively. The energy deposition in the copper target, the electron current at the target and the computational efficiency are also calculated. EGSnrc is found to be the only self-consistent code when comparing results calculated using the default transport parameters of the condensed history mode with those calculated in the single scattering mode.

4.
Phys Med Biol ; 60(13): 4951-62, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26060927

ABSTRACT

A simple geometry is chosen to highlight similarities and differences of current electron transport algorithms implemented in four Monte Carlo codes commonly used in radiation physics. Energy deposited in a water-filled sphere by mono-energetic electron beams was calculated using EGSnrc, Geant4, MCNP5 and Penelope as the radius of the sphere varied from 0.25 cm to 4.5 cm for beam energies of 0.5 MeV, 1.0 MeV and 5.0 MeV. The calculations were performed in single-scattering mode (where applicable) and in condensed history mode. A good agreement is found for the single-scattering calculations except for the in-air case at 0.5 MeV where differences increase with decreasing radius up to 5% between EGSnrc and Penelope. Differences between results calculated with the default user settings when compared to their own single-scattering modes are under 5% for all codes when the sphere is surrounded by vacuum, however, large differences occur for Geant4, MCNP5 and Penelope when air is introduced around the sphere. Finally, the parameters associated with the multiple scattering algorithms were tuned reducing these differences below 10% for these codes at the expense of increased computation time.


Subject(s)
Algorithms , Electrons , Scattering, Radiation
5.
Phys Sportsmed ; 8(1): 83-91, 1980 Jan.
Article in English | MEDLINE | ID: mdl-29261385

ABSTRACT

An easily applied resined fiberglass navicular cast remains firm when patients engage in normal activities, including bathing, and because it is porous, their skin stays dry.

SELECTION OF CITATIONS
SEARCH DETAIL
...