Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 6(18): 16276-82, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25111901

ABSTRACT

This work presents the graphoepitaxy of high-χ block copolymers (BCP) in standard industry-like lithography stacks and their transfer into the silicon substrate The process includes conventional 193 nm photolithography, directed self-assembly of polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and pulsed plasma etching to transfer the obtained features into the substrate. PS-b-PDMS has a high Flory-Huggins interaction parameter (high-χ) and is capable of achieving sub-10 nm feature sizes. The photolithography stack is fabricated on 300 mm diameter silicon wafers and is composed of three layers: spin-on-carbon (SoC), silicon-containing anti-reflective coating (SiARC) and 193 nm photolithography resist. Sixty-nanometer-deep trenches are first patterned by plasma etching in the SiARC/SoC stack using the resist mask. The PS-b-PDMS is then spread on the substrate surface. Directed self-assembly (DSA) of the BCP is induced by a solvent vapor annealing process and PDMS cylinders parallel to the substrate surface are obtained. The surface chemistry based on SoC permits an efficient etching process into the underlying silicon substrate. The etching process is performed under dedicated pulsed plasma etching conditions. Fifteen nanometer half-pitch dense line/space features are obtained with a height up to 90 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...