Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 249: 104381, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34536592

ABSTRACT

The diatom Stauroneis sp. was previously identified as a promising source of fucoxanthin and omega-3 oils. Methyl jasmonate (MJ) supplementation is known to enhance metabolite yields in this species without impacting on growth or photosynthesis. Therefore, a label-free proteomics approach was undertaken to further evaluate the functional role of MJ on the diatom's physiology. Of the twenty cultivation regimes were screened, Uf/2 medium with green+white LED's induced the greatest metabolic response when exposed to 10 µM MJ treatment. These conditions significantly enhanced the pigment and total cellular lipids contents. The increase in fucoxanthin correlating with a 20% increase in Trolox reducing equivalent in the total antioxidant assay, indicating a non-enzymatic antioxidant role of fucoxanthin to mitigate the detrimental effects of a redox imbalance within chloroplasts. The proteomics identified 197 proteins up-regulated 48 h after MJ exposure including cell signalling cascades, photosynthetic processes, carbohydrate metabolism, lipid biosynthesis and chloroplast biogenesis. MJ strengthened the dark reactions of photosynthesis to support growth and metabolite fluxes. The MJ-induced ER stress protein triggered lipid body production, facilitating metabolite turnover and trafficking between cellular organelles. Plastid terminal oxidase and glutamate 1-semialdehyde 2,1-aminomutase may act as MJ-induced ROS responsive regulatory switch to support chloroplast biosynthesis. SIGNIFICANCE STATEMENT: Phytohormones represents a promising tool to enhance the high-value metabolite yields in plants and algae, however little is known of the role of methyl jasmonate in diatoms at a molecular level. A shotgun proteomics approach was undertaken to determine the influence of MJ on the diatom's cellular physiology in the marine diatom Stauroneis sp., revealing a signal transduction cascade leading to increased lipid and pigment content and identified promising targets for genetic engineering.


Subject(s)
Diatoms , Acetates , Biomass , Cyclopentanes , Oxylipins/pharmacology , Proteome
2.
Biotechnol Prog ; 37(6): e3197, 2021 11.
Article in English | MEDLINE | ID: mdl-34337902

ABSTRACT

There has been an increasing drive toward better valorising raw biological materials in the context of the sustainability of bio-based industries and the circular economy. As such, microalgae hold the ability to biosynthesise valuable metabolites, which are sought after within the bioenergy, pharmaceuticals, cosmetics or nutrition sectors. Owing to their bioactivities, the xanthophyll pigment fucoxanthin and the omega-3 polyunsaturated fatty acid eicosapentaenoic acid (EPA) have fostered increasing interests in terms of sustainably refining them from natural sources, such as microalgae. Together with the suitability of individual species to industrial cultivation, a key challenge resides in optimizing the yields of these compounds within the microalgal biomass they are retrieved from. The marine diatom Stauroneis sp. LACW24 was batch cultivated into its stationary phase of growth prior to being subjected at high cell density (1 × 106 cells mL-1 ) to seven different regimes of light exposure in replenished medium and under nutritional limitation (silica and nitrate) for 12 days. The highest EPA proportions and yields were obtained under blue LED in f/2 medium (16.5% and 4.8 mg g-1 , respectively), double the values obtained under red LED illumination. The fucoxanthin yield was the highest when cells were subjected to blue LEDs (5.9 mg g-1 ), a fourfold increase compared to the nitrogen-limited treatment under white LEDs. These results indicate that a two-stage approach to the batch cultivation of this diatom can be used for enhancing the production of the high-value metabolites fucoxanthin and EPA post-stationary phase.


Subject(s)
Cell Culture Techniques/methods , Diatoms , Eicosapentaenoic Acid/metabolism , Xanthophylls/metabolism , Diatoms/metabolism , Diatoms/radiation effects
3.
Appl Biochem Biotechnol ; 193(4): 981-997, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33215392

ABSTRACT

Microalgae constitute a heterogeneous and diverse range of organisms capable of accumulating bioactive metabolites, making them promising feedstock for applications in the nutraceutical, functional food, animal feed, biofertilisation or biofuel sectors. There has been renewed interest in recent times in natural sources of antioxidants, particularly as health products and preserving agents. Microalgae strains isolated from aquatic habitats in Ireland were successfully brought into culture. The 91 strains were grown phototrophically in nutrient-enriched media to generate biomass, which was harvested and assessed for antioxidant potential. Extracts were screened for antioxidant activity using a modified volumetric Trolox-ABTS assay and the Folin-Ciocalteu method. Two heterokont marine strains of interest were further studied to ascertain variations in antioxidant capacity across different stages of batch culture growth. The antioxidant activity of extracts of bacillariophyte cf. Stauroneis sp. LACW24 and ocrophyte cf. Phaeothamnion sp. LACW34 increased during growth with a maximum being observed during the late stationary or early death phase (2.5- to 8-fold increases between days 20 and 27). Strains LACW24 and LACW34 contained 5.9 and 3.0 mg g-1 (DW) of the xanthophyll fucoxanthin, respectively. Extracts of strains also showed no cytotoxicity towards mouse cell lines. These results highlight the potential of these strains for biomass valorisation and cultivation upscaling and to be further considered as part of ongoing bioprospecting efforts towards identifying novel species to join the relatively narrow range of commercially exploited marine microalgae species.


Subject(s)
Antioxidants/metabolism , Biomass , Bioprospecting , Microalgae/growth & development , Stramenopiles/growth & development , Water Microbiology
4.
Photosynth Res ; 143(1): 67-80, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31705368

ABSTRACT

Tailoring spectral quality during microalgal cultivation can provide a means to increase productivity and enhance biomass composition for downstream biorefinery. Five microalgae strains from three distinct lineages were cultivated under varying spectral intensities and qualities to establish their effects on pigments and carbon allocation. Light intensity significantly impacted pigment yields and carbon allocation in all strains, while the effects of spectral quality were mostly species-specific. High light conditions induced chlorophyll photoacclimation and resulted in an increase in xanthophyll cycle pigments in three of the five strains. High-intensity blue LEDs increased zeaxanthin tenfold in Rhodella sp. APOT_15 relative to medium or low light conditions. White light however was optimal for phycobiliprotein content (11.2 mg mL-1) for all tested light intensities in this strain. The highest xanthophyll pigment yields for the Chlorophyceae were associated with medium-intensity blue and green lights for Brachiomonas submarina APSW_11 (5.6 mg g-1 lutein and 2.0 mg g-1 zeaxanthin) and Kirchneriella aperta DMGFW_21 (1.5 mg g-1 lutein and 1 mg g-1 zeaxanthin), respectively. The highest fucoxanthin content in both Heterokontophyceae strains (2.0 mg g-1) was associated with medium and high white light for Stauroneis sp. LACW_24 and Phaeothamnion sp. LACW_34, respectively. This research provides insights into the application of LEDs to influence microalgal physiology, highlighting the roles of low light on lipid metabolism in Rhodella sp. APOT_15, of blue and green lights for carotenogenesis in Chlorophyceae and red light-induced photoacclimation in diatoms.


Subject(s)
Acclimatization/radiation effects , Carbon/metabolism , Light , Microalgae/metabolism , Microalgae/radiation effects , Pigments, Biological/metabolism , Chlorophyceae/metabolism , Chlorophyll A/metabolism , Microalgae/growth & development , Phycobiliproteins/metabolism , Rhodophyta/growth & development , Rhodophyta/metabolism , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...