Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2024: 5461358, 2024.
Article in English | MEDLINE | ID: mdl-38915814

ABSTRACT

Pharmaceutical formulations have traditionally relied on plants and their derivatives for various APIs and excipients. In Ghana, the widespread utilization of plantains, irrespective of their ripeness, generates significant waste at every stage of processing, posing disposal issues. Fascinatingly, these wastes, often discarded, possess significant economic potential and can be recycled into valuable raw materials or products. Pectin, a polysaccharide that occurs naturally, has seen a surge in interest in recent times. It has found widespread use in the pharmaceutical sector, particularly as a binding agent in tablet formulations. This study aimed to evaluate pectin from two popular plantain varieties, Apem (M) and Apantu (T) at different ripening stages, for pharmaceutical use as a binding agent in immediate-release tablets. The ripening stages selected were the matured-green (G), half-ripe (H), and full-ripe (R). Acid (D) and alkaline (L) mediums of extraction were employed for each ripening stage for both varieties. Wet granulation method was used to prepare the granules using paracetamol as a model drug, and their flow properties were subsequently assessed. Postcompression tests including, hardness, friability, weight uniformity, disintegration, assay, and in vitro dissolution were also assessed. Granules from all formulation batches had good flow properties indicated by their angle of repose (14.93 ± 1.41-21.80 ± 1.41), Hausner ratio (0.96 ± 0.27-1.22 ± 0.02), and compressibility (%) (7.69 ± 0.002-20.51 ± 0.002). All the tablets passed the uniformity of weight with none deviating by ±5%. The hardness of all the formulated tablets ranged between 3.96 ± 0.32 and 13.21 ± 0.36, while the friability for all tablets was below 1%. The drug content was between 100.1 ± 0.23% and 103.4 ± 0.01%. Tablets formulated with pectin as a binding agent at concentrations of 10% w/v and 15% w/v successfully met the disintegration test criteria for immediate release tablets. However, those prepared with a concentration of 20% w/v (MGL, MHD, MHL, MRD, MRL, TGL, THD, THL, and TRL) did not pass the disintegration test. Consequently, all batches of tablets successfully met the dissolution test requirement (Diss, Q > 75%), except for the batches that did not pass the disintegration test (Diss, Q < 75%). Ultimately, pectins extracted from the peels of Apem and Apantu at different ripening stages using acid and alkaline extraction can be commercially exploited as pharmaceutical binders at varying concentrations in immediate-release tablets.


Subject(s)
Pectins , Tablets , Pectins/chemistry , Ghana , Plantago/chemistry , Acetaminophen/chemistry , Excipients/chemistry
2.
ScientificWorldJournal ; 2023: 8898045, 2023.
Article in English | MEDLINE | ID: mdl-37808477

ABSTRACT

Natural polymers such as pectin have gained increased utilization in pharmaceutical and biotechnology sectors because they are affordable, easily accessible, nontoxic, and chemically modifiable, with the potential to be biodegradable and biocompatible. Musa paradisiaca (plantain) peels make up 30-40% of the overall weight of the fruit. The extraction of pectin from these residues can therefore be viewed as a possible waste of wealth. This study, therefore, focused on evaluating the suspending properties of pectin obtained from Musa paradisiaca (plantain) peels (through acid and alkaline extraction) and presented an alternative suspending agent in the pharmaceutical formulation of suspensions. The unripe peels of Musa paradisiaca were acquired and authenticated at the Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. Pectin was extracted from the peels using both acid and alkaline extraction processes, respectively, characterized, and evaluated for its phytochemical properties. Different concentrations of the acid and alkaline pectin extracts were employed as a suspending agent in paracetamol suspensions, using acacia gum as a standard. The pectin yields obtained were 4.88% and 7.61% for the acid and alkaline extraction processes, respectively, while phytochemical screening revealed the presence of glycosides, tannins, saponins, and phenols in both extracts. The alkaline pectin extract recorded higher equivalent weight, degree of esterification, ash content, and crude content than the acid pectin extract, while FTIR identified similar functional groups in both acid and alkaline pectin extracts. The test suspensions reported significant differences (P < 0.05) in flow rates, ease of redispersion, sedimentation volumes, and rates compared with acacia gum. Moreover, when the acid and alkaline pectin extracts were compared, significant differences (P < 0.05) were observed in sedimentation rates and sedimentation volumes, suggesting that the extraction method may affect suspending properties. Ultimately, the alkaline pectin extract had better suspending properties than the acid pectin extract; however, they both can be used as an alternative to acacia gum as a suspending agent.


Subject(s)
Musa , Pharmacy , Plantago , Pectins , Excipients/chemistry , Musa/chemistry , Drug Compounding , Gum Arabic , Phytochemicals
3.
BMC Complement Med Ther ; 23(1): 34, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36737748

ABSTRACT

BACKGROUND: Medicinal plants represent a valuable source for new effective and safe antimicrobial drugs making them an alternative therapy. Existing antimicrobial agents are costly and mostly associated with possible side effects. The aim of the present study therefore, was to assess the antimicrobial property and phytochemical composition of hydroethanolic extract of Tapinanthus bangwensis leaves and its fractions. METHOD: T. bangwensis leaves (harvested from its host plant, Persea americana) was extracted by cold maceration with 70% ethanol and further fractionated with different organic solvents using the solvent partitioning method to obtain the crude extract, petroleum ether, chloroform, ethyl acetate and the resulting aqueous fractions. The phytochemical constituents of the extracts were screened and quantified. Also, the TLC of the extracts were analyzed to serve as a fingerprint. Using the agar diffusion and broth dilution methods, the antimicrobial properties of the extracts were assessed. RESULTS: The study showed that the hydroethanolic (70%) crude extract of T. bangwensis leaves and its fractions contain phenolic compounds, flavonoids, saponins, phytosterols and reducing sugars. The phytoconstituents were well extracted into the ethyl acetate fraction than the other fractions evidenced in the high levels (p < 0.0001) of saponins (66.47 ± 1.72% w/w), phenolic compounds (77.75 ± 1.06 mg/100 mg GAE) and flavonoids (44.34 ± 0.06 mg/100 mg QE) contents. From the antimicrobial studies, all the microorganisms tested exhibited varying degrees of susceptibility to the extracts with MIC values between 0.78 to 12.5 mg/mL. The crude extract of T. bangwensis leaves, its ethyl acetate and chloroform fractions also exhibited lethal antimicrobial activity with MLC between 6.25 to 50 mg/mL. CONCLUSION: The crude extract of T. bangwensis leaves and its fractions demonstrated antimicrobial properties against Escherichia coli, Staphylococcus aureus, Staphylococcus saprophyticus and Candida albicans, thereby representing a potential source of natural antimicrobial agent. Further study is required to identify and isolate antimicrobial compounds from the plant for the development of the natural bioactive antimicrobial agents.


Subject(s)
Anti-Infective Agents , Loranthaceae , Persea , Plant Extracts/chemistry , Chloroform , Anti-Infective Agents/chemistry , Plant Leaves/chemistry , Solvents/analysis , Ethanol , Phytochemicals/pharmacology , Phytochemicals/analysis , Flavonoids/pharmacology , Flavonoids/analysis
4.
Article in English | MEDLINE | ID: mdl-36437836

ABSTRACT

The development of herbal medicines as a remedy for several illnesses has been recognized and accepted worldwide by health experts. Parquetina nigrescens is a perennial evergreen woody climber from the Apocynaceae family, widely used in Africa for the treatment of many diseases. The current study is intended to review and put together information available on this ethno-medicinal plant, which will improve scientific knowledge about the plant and also identify research areas that need to be investigated further. The information related to the plant was obtained using scientific databases such as Google scholar, WebMD, Wiley, Science direct, Cochrane database, student thesis, PubMed, and Scopus to obtain relevant literature regarding the botanical descriptions and distribution of the plant, traditional uses, phytochemicals, active compounds isolated from the plant, and pharmacological properties of P. nigrescens. Several traditional uses for different parts of the plant (leaves, stem bark, roots, leaf sap, flowers, and latex) have been presented. A review of the phytochemical composition of different plant parts revealed the presence of reducing sugars, flavonoids, tannins, alkaloids, cardiac glycosides, steroids, coumarin, anthraquinones, terpenoids, and saponins. Many studies also highlighted pharmacological activities related to P. nigrescens, including antianemic and haematological activity, antidiabetic, anti-inflammatory, antipyretic, analgesic, antiasthmatic, antimicrobial, insecticidal, neurotoxic, cytotoxic, antityphoid, antipolycystic ovarian syndrome activity, antilipidemic, and memory-enhancing activity. It is recommended that further in-vivo and clinical studies be conducted on the plant for the development of novel drugs.

5.
Heliyon ; 8(8): e10366, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36082325

ABSTRACT

Ethnopharmacological relevance: Bridelia ferruginea belonging to the family Euphorbiaceae, identified as an important commonly growing shrub, is used in traditional medicine for managing arthritis, dysentery, constipation, chronic diabetes, skin diseases, bladder and intestinal disorders, oral infections, thrush, bites and as an arrow poison antidote. This review aims at providing information on the traditional medicinal uses, pharmacological activities, phytochemistry and toxicity studies of Bridelia ferruginea to bridge the gap between traditional medicinal uses and preclinical studies on B. ferruginea and subsequently lead to the development of valued added medicines from B. ferruginea. Materials and methods: Data in this review were compiled using databases such as Google Scholar, Science Direct, Scopus, PubMed, Springer link, Elsevier and Taylor and Francis, articles from peer reviewed journals and other grey literature (short notes, book chapters, short communications) to access all the relevant information available on B. ferruginea. Results: B. ferruginea contains different phytochemicals including flavonoids, phenolics, phytosterols, triterpenes, saponins, alkaloids and cardiac glycosides. Gallocatechin-(4'-O-7)-epigallocatechin, 3,5-dicaffeoylquinic acid, 1,3,4,5-tetracaffeoylquinic acid and some derivatives of 3-methoxyflavone, such as quercetin-3-methyl ether, quercetin 3-,7,3',4'-tetramethyl ether, myricetin 3',4',5'-trimethyl ether, myricetin 3,3',4',5'-tetramethyl ether, myricetin and quercetin 3-O-glucoside specific flavonoids and biflavonoids like apigenin, kaempferol and glycosides of both have been isolated and further characterized from B. ferruginea. B. ferruginea has several pharmacologically beneficial properties including anti-inflammatory, anti-diabetic, antioxidant, antimicrobial, anti-infective, antipyretic, analgesic, diuretic and natriuretic activities. Conclusion: The wide distribution, traditional medicinal uses and wealth of phytochemicals present in B. ferruginea suggests that the plant can be useful in lead compound discovery. Although B. ferruginea has been widely studied, further studies on the mechanism of action, bioavailability, pharmacokinetics, toxicity and side effects in humans need to be investigated.

6.
Adv Pharmacol Pharm Sci ; 2022: 5340953, 2022.
Article in English | MEDLINE | ID: mdl-35528114

ABSTRACT

Antiaris is a monoherbal decoction produced by the Centre for Plant Medicine Research (CPMR), Mampong-Akuapem, Ghana. It is prepared from the stem bark of Antiaris africana Engl. (Moraceae), prescribed, and dispensed to patients for the management of nervous disorders. This current formulation presents notable challenges in patients' adherence to treatment regimen due to its bulkiness and bitterness. These challenges have resulted in a decrease in therapeutic outcome. This study sought to transform Antiaris into oral capsules to mask its bitter taste and reduce bulkiness of the product to improve patients' convenience. In this study, four (4) conventional release capsule formulations were successfully prepared from the decoction via wet granulation using corn starch, lactose, light magnesium carbonate (LMC), and microcrystalline cellulose (MCC) and labelled A01, A02, A03, and A04 respectively. The drug-excipient compatibility studies on A01, A02, A03, and A04 were investigated using Fourier transform infrared (FTIR) spectroscopy. The flow properties of the granules as well as the quality assessment of the formulations such as dissolution, disintegration, uniformity of weight, and assay tests were evaluated using pharmacopoeial and nonpharmacopoeial methods. Appropriate models were used to investigate the difference factor (f 1 ) and similarity factor (f 2 ) of the dissolution profiles of the formulations and Antiaris. From the study, all formulated granules had excellent flow properties with Carr's index from 7.83 to 9.56%, Hausner's ratio from 1.09 to 1.10, and angle of repose from 25.13 to 27.87°. Drug-excipient compatibility studies demonstrated no interaction between extract and used excipients. All formulations passed the uniformity of weight, disintegration, assay, and dissolution tests. Formulation A02 had the highest dissolution efficiency of 100.12%, while A03 recorded the least value of 97.22% in the 1 h dissolution studies. A comparison of their various dissolution profiles, respectively, to that of its decoction demonstrated their similarity, since, in all comparisons, f 2 < 15 and f 1 > 50. This implies that, any of these four formulations could be a good substitute for Antiaris.

7.
Adv Pharmacol Pharm Sci ; 2022: 7235489, 2022.
Article in English | MEDLINE | ID: mdl-35265846

ABSTRACT

Elimination of microorganisms from herbal products has been a major concern due to its implicated health risk to consumers. Drying of herbal materials has been employed for centuries to reduce the risk of contamination and spoilage. The present study adopted three drying approaches in an attempt to eliminate microorganisms from Lippia multiflora tea bag formulation. This study also evaluated the tea bags and optimized the extraction procedure. The L. multiflora leaves for tea bagging were air-dried and milled (A), oven-dried and milled (B), and microwaved (the milled air-dried leaves) (C). The moisture contents were determined at 105°C ± 2°C for 2 hours to constant weight. Phytochemical parameters such as phytochemical constituents, total water extractive, and pH were assessed. The microbial safety and quality of the L. multiflora tea bags were evaluated using the British Pharmacopoeia 2019 specifications. The uniformity of the mass of the formulated tea bags was also determined. Extraction from the Lippia tea bags was optimized. The results showed that using the approaches (A, B, and C) adopted for drying and processing, the moisture contents of the formulated tea bags were in the range of 9.75-10.71% w/w. All the formulated tea bags contained reducing sugars, phenolic compounds, polyuronides, flavonoids, anthracenosides, alkaloids, saponins, and phytosterols. The pH range of the formulations was 7.11-7.54, whereas the total water extractive values were in the range of 19.12-20.41% w/w. The one-way analysis of variance demonstrated no significant difference in the data obtained from the results from A, B, and C. The formulation from A was found to be unsafe for consumption due to unacceptable microbial contamination limits. Microbial load of the formulations from B and C were within the BP specifications. All the batches of the formulations passed the uniformity of mass test. An optimized extraction procedure was obtained when one tea bag was extracted in 250 mL of hot water within the specified time. L. multiflora leaves meant for tea bagging should be oven-dried or microwaved before tea bagging for safe consumption.

8.
Heliyon ; 7(12): e08465, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917789

ABSTRACT

Peptic ulcer disease affects many people globally. With the increasing resistance to some orthodox antibiotics such as Clarithromycin and Metronidazole, it is important that new acceptable, safer and effective therapies are developed to manage this disease. Various herbal medicines have been used traditionally for the remedy of peptic ulcer disease (PUD), however scientific information with regards to their anti-peptic ulcer both in-vivo and in-vitro as well as clinical studies supporting their use is still inadequate. The Centre for Plant Medicine Research, (CPMR) Mampong-Akuapem, Ghana manufactures three herbal Products namely Enterica, Dyspepsia and NPK 500 capsules which are currently used for the remedy of PUD as a triple therapy at its out-patient clinic with promising effects. The aim of this review is to gather information from literature on the anti-ulcer properties, pharmacological, phytochemical constituents and related activities of herbal plants used at the CPMR for formulation of the triple herbal therapy. This review may, provide some scientific bases for the use of Enterica, Dyspepsia and NPK 500 capsules in the management of Peptic ulcer at the CPMR out-patient clinic. METHODS: Organization for the review involved the on and/or offline search for information from available literature using electronic data and scientific research information resources such as PubMed, Science Direct and Google scholar. RESULTS: In this review, fifteen ethno-medicinal plants used for the formulation of Enterica, Dyspepsia and NPK capsules have been discussed, presenting the description of the plants, composition and pharmacological activity. INTERPRETATION: Tables with the summary of reviewed medicinal plants with their anti-ulcer models and inference on possible mechanisms of action were drawn up. The mechanism(s) of action of individual plants and products (Enterica, Dyspepsia and NPK 500 capsules) must be further investigated and established experimentally in-vitro in addition to in-vivo pharmacological and clinical activity studies to confirm their use in the remedy of PUD.

SELECTION OF CITATIONS
SEARCH DETAIL
...