Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ticks Tick Borne Dis ; 15(1): 102274, 2024 01.
Article in English | MEDLINE | ID: mdl-37918285

ABSTRACT

Rhipicephalus microplus is a cattle tick widely distributed in tropical and subtropical areas. Various acaricides are used and applied to control the ticks, but resistance is common. The objectives of this study were to evaluate the spatial distribution of resistance to the most commonly applied acaricides (amitraz, ivermectin, and alpha-cypermethrin) in ticks and assess potential risk factors associated with tick resistance in a strip between ±0.5° latitude of the continental part of Ecuador. Larval package tests were used to evaluate the level of acaricide resistance in 96 cattle farms. The association between 11 farm management and 8 ecological variables and acaricide resistance and multi-resistance was evaluated. Dose-response models were used to study the level of resistance. 72 % (69/96), 70 % (67/96), and 64 % (61/96) of farms had ticks resistant to amitraz, ivermectin, and alpha-cypermethrin, respectively. Multi-resistance was also widespread. Larger herds and dairy farms had a significantly higher probability of resistance for three commonly used acaricides. Environmental factors related to rainfall were also associated with acaricidal resistance presence. Ivermectin resistance was associated with use of the acaricide (OR = 8.9909; 7.7519-10.2300), mean temperature (OR = 1.3205;1.0742-1.6799)), and inversely associated with paddock rotation (OR = 0.1753; 0.0294-0.7836), and precipitation of the wettest month (BIO13) (OR = 0.9903; 0.9839-0.9957); amitraz with use of the acaricide (OR = 4.3934; 3.3679-5.4188), precipitation seasonality (BIO15) (OR=0.9742; 0.9542-0.9925), and precipitation (OR = 0.9995; 0.9994-0.9999); and alpha-cypermethrin with precipitation (OR=0.9995; 0.9990-0.9999) and use of the acaricide (OR = 14.4597; 13.4343-15.4852). In conclusion, acaricide resistance was widespread in our study area. Better-integrated tick management and environmentally friendly control strategies are required to reduce the use of acaricides while limiting tick-associated damage in herds.


Subject(s)
Acaricides , Cattle Diseases , Rhipicephalus , Tick Infestations , Animals , Cattle , Acaricides/pharmacology , Ivermectin , Ecuador/epidemiology , Tick Infestations/epidemiology , Tick Infestations/veterinary , Cattle Diseases/epidemiology
2.
PLoS One ; 18(6): e0287104, 2023.
Article in English | MEDLINE | ID: mdl-37384770

ABSTRACT

Estimates of economic losses in cattle due to tick infestations in subtropical areas are limited, such as in Ecuador. Ticks affect animal production and health, but those direct effects are difficult to estimate since financial exercises carried out in farms consider both costs of the inputs and revenues. This study aims to quantify the costs of inputs involved in milk production and to know the role of acaricide treatment in the production costs on dairy farms in subtropical zones using a farming system approach. Regression and classification trees were used to study the relationship between tick control, acaricide resistance and the presence of high level of tick infestation in the farm system. Even though there was no significant direct association between high levels of tick infestation and the presence of acaricide resistance in ticks, a more complex structure for resistances operates in the manifestation of high tick infestation involving levels of farm technology and no acaricide resistance. Farms with higher levels of technology allocate a lower percentage of sanitary expenses to control ticks (13.41%) in comparison to semi-technified (23.97%) and non-technified farms (32.49%). Likewise, more technified and bigger herds have a lower annual expenditure on acaricide treatment (1.30% of the production budget equivalent to 8.46 USD per animal) compared to non-technified farms where it can represent more than 2.74% of the production budget and where the absence of cypermethrin resistance increases the treatment cost to 19.50 USS per animal annually. These results can motivate the development of information campaigns and control programmes targeted to the reality of small and medium farms that are the most affected in terms of the money they invest in controlling ticks.


Subject(s)
Acaricides , Rhipicephalus , Tick Infestations , Animals , Cost-Benefit Analysis , Farms , Ecuador , Tick Infestations/epidemiology , Tick Infestations/veterinary
3.
Pathogens ; 11(4)2022 Mar 26.
Article in English | MEDLINE | ID: mdl-35456078

ABSTRACT

Decision-making on tick control practices is linked to the level of knowledge about livestock farming and to the social context in which individuals practice them. Tick infestation is one of the main problems in tropical livestock production. The objective of this study was to characterize tick-control related practices in two tropical livestock areas and their potential association with the level of tick infestation. A total of 139 farms were included in this survey. To determine this association, a multivariate logistic regression model was used. A stepwise model selection procedure was used and model validation was tested. Cattle husbandry as a main activity, the use of external paddocks, the use of amitraz, and the lack of mechanization on the farm were related with high tick infestation. On the other hand, owner involvement in the preparation of acaricide solution was identified as a protective factor against high tick infestation. At animal level, age (old), body condition status (thin), and lactation were also associated with high tick infestations, while Bos primigenius indicus cattle and their crosses reduced the probability of high tick infestations. The factors studied, such as herd size, education level of the owners, and veterinary guidance, varied from farm to farm. Nonetheless, these differences did not generate changes in the level of tick infestation. According to the area under the receiver operating characteristic curve (AUC-ROC), the model at farm level predicts a high level of infestation, with an accuracy of 72.00% and high sensitivity. In addition, at animal level, crossbreeding with indicus cattle and breeding selection for host resistance will be useful against high tick infestation. Likewise, the implementation of programs of capacitation and research on tick control for farmers, cowboys, and vets in these areas is necessary.

SELECTION OF CITATIONS
SEARCH DETAIL
...