Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36559665

ABSTRACT

The browning of the internal tissues of hazelnut kernels, which are visible when the nuts are cut in half, as well as the discolouration and brown spots on the kernel surface, are important defects that are mainly attributed to Diaporthe eres. The knowledge regarding the Diaporthe eres infection cycle and its interaction with hazelnut crops is incomplete. Nevertheless, we developed a mechanistic model called DEFHAZ. We considered georeferenced data on the occurrence of hazelnut defects from 2013 to 2020 from orchards in the Caucasus region and Turkey, supported by meteorological data, to run and validate the model. The predictive model inputs are the hourly meteorological data (air temperature, relative humidity, and rainfall), and the model output is the cumulative index (Dh-I), which we computed daily during the growing season till ripening/harvest time. We established the probability function, with a threshold of 1% of defective hazelnuts, to define the defect occurrence risk. We compared the predictions at early and full ripening with the observed data at the corresponding crop growth stages. In addition, we compared the predictions at early ripening with the defects observed at full ripening. Overall, the correct predictions were >80%, with <16% false negatives, which confirmed the model accuracy in predicting hazelnut defects, even in advance of the harvest. The DEFHAZ model could become a valuable support for hazelnut stakeholders.

2.
PLoS One ; 16(3): e0247563, 2021.
Article in English | MEDLINE | ID: mdl-33690684

ABSTRACT

Diaporthe eres has been recently reported as the causal agent of hazelnut defects, with characteristic brown spots on the kernels surface and internal fruit discoloration. Knowledge regarding the ecology of this fungus is poor but, is critical to support a rationale and effective hazelnut crop protection strategy. Therefore, a study was performed to describe and model the effect of different abiotic factors such as temperature (T, 5-35°C, step 5°C) and water activity (aw 0.83-0.99, step 0.03) regimes on D. eres mycelial growth, pycnidial conidiomata development and asexual spore production during a 60-day incubation period. Alpha conidia germination was tested in the same T range and at different relative humidities (RH = 94, 97 and 100%) over 48 h incubation period. Fungal growth was observed from the first visual observation; regarding pycnidia and cirrhi, their development started after 8 and 19 days of incubation, respectively and increased over time. The optimum T for growth was 20-25°C and for pycnidia and cirrhi development was 30°C; aw ≥ 0.98 was optimal for the tested steps of the fungal cycle. The best condition for conidial germination of D. eres was at 25°C with RH = 100%. Quantitative data obtained were fitted using non- linear regression functions (Bete, logistic and polynomial), which provided a very good fit of the biological process (R2 = 0.793-0.987). These functions could be the basis for the development of a predictive model for the infection of D. eres of hazelnuts.


Subject(s)
Ascomycota/growth & development , Corylus/growth & development , Fruit/growth & development , Mycelium/growth & development , Spores, Fungal/growth & development , Algorithms , Ascomycota/isolation & purification , Ascomycota/physiology , Corylus/microbiology , Fruit/microbiology , Host-Pathogen Interactions , Models, Biological , Mycelium/isolation & purification , Mycelium/physiology , Spores, Fungal/isolation & purification , Spores, Fungal/physiology , Temperature , Water/metabolism
3.
Front Plant Sci ; 11: 611655, 2020.
Article in English | MEDLINE | ID: mdl-33362837

ABSTRACT

Fungi of the genus Diaporthe have been reported as the main causative agent of hazelnut defects in the Caucasus area. This study aimed to define which fungal species are present in defective hazelnuts grown in Turkey and confirm the role of Diaporthe spp. Seven hazelnut orchards were selected, with each one located in a different Turkish Province (Düzce, Giresun, Ordu, Samsun, Sakarya, Trabzon, and Zonguldak), and hazelnuts were collected at early and full ripening. Fungal isolation and identification were performed at the genus level based on morphological characteristics. Several genera were isolated, with Diaporthe spp. being among the prevalent. This was the only genus with increasing incidence from early to full ripening, and incidence at full ripening was positively correlated both with internal (ρ = 0.86) and visible defects (ρ = 0.81), which confirmed its role as the key causative agent of hazelnut defects. The correlation of defect occurrence with rainfall, reported in previous study, was not confirmed, possibly due to the low defect incidence. A total of 86 Diaporthe monosporic strains isolated from Turkish hazelnut samples, together with 33 strains collected in the Caucasus region and 6 from Italy, were analyzed with a multi-locus phylogeny based on three genomic loci (ITS, EF1-α, and tub). The results showed that Diaporthe strains can be grouped into 7 distinct clades, with a majority of Turkish strains (95%) being placed into a single clade related with D. eres. These samples were organized into several sub-clades, which indicates the existence of genetically diverse sub-populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...