Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(4): 112369, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37043356

ABSTRACT

To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.


Subject(s)
Cerebral Blood Volume , Cerebrovascular Circulation , Animals , Cerebrovascular Circulation/physiology , Brain/physiology , Brain Mapping/methods , Primates , Magnetic Resonance Imaging/methods , Neurons/physiology , Cognition
2.
Nat Nanotechnol ; 18(6): 667-676, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37012508

ABSTRACT

Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.


Subject(s)
Ectopic Gene Expression , Visual Cortex , Neurons/metabolism , Retina , Vision, Ocular
3.
PLoS Biol ; 20(5): e3001654, 2022 05.
Article in English | MEDLINE | ID: mdl-35617290

ABSTRACT

In both human and nonhuman primates (NHP), the medial prefrontal region, defined as the supplementary eye field (SEF), can indirectly influence behavior selection through modulation of the primary selection process in the oculomotor structures. To perform this oculomotor control, SEF integrates multiple cognitive signals such as attention, memory, reward, and error. As changes in pupil responses can assess these cognitive efforts, a better understanding of the precise dynamics by which pupil diameter and medial prefrontal cortex activity interact requires thorough investigations before, during, and after changes in pupil diameter. We tested whether SEF activity is related to pupil dynamics during a mixed pro/antisaccade oculomotor task in 2 macaque monkeys. We used functional ultrasound (fUS) imaging to examine temporal changes in brain activity at the 0.1-s time scale and 0.1-mm spatial resolution concerning behavioral performance and pupil dynamics. By combining the pupil signals and real-time imaging of NHP during cognitive tasks, we were able to infer localized cerebral blood volume (CBV) responses within a restricted part of the dorsomedial prefrontal cortex, referred to as the SEF, an area in which antisaccade preparation activity is also recorded. Inversely, SEF neurovascular activity measured by fUS imaging was found to be a robust predictor of specific variations in pupil diameter over short and long-time scales. Furthermore, we directly manipulated pupil diameter and CBV in the SEF using reward modulations. These results bring a novel understanding of the physiological links between pupil and SEF, but it also raises questions about the role of anterior cingulate cortex (ACC), as CBV variations in the ACC seems to be negligible compared to CBV variations in the SEF.


Subject(s)
Pupil , Saccades , Animals , Cognition , Frontal Lobe/physiology , Macaca mulatta
4.
Mol Ther Methods Clin Dev ; 24: 1-10, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34977267

ABSTRACT

Over the last 15 years, optogenetics has changed fundamental research in neuroscience and is now reaching toward therapeutic applications. Vision restoration strategies using optogenetics are now at the forefront of these new clinical opportunities. But applications to human patients suffering from retinal diseases leading to blindness raise important concerns on the long-term functional expression of optogenes and the efficient signal transmission to higher visual centers. Here, we demonstrate in non-human primates continued expression and functionality at the retina level ∼20 months after delivery of our construct. We also performed in vivo recordings of visually evoked potentials in the primary visual cortex of anesthetized animals. Using synaptic blockers, we isolated the in vivo cortical activation resulting from the direct optogenetic stimulation of primate retina. In conclusion, our work indicates long-term transgene expression and transmission of the signal generated in the macaque retina to the visual cortex, two important features for future clinical applications.

5.
Vision (Basel) ; 5(3)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34462414

ABSTRACT

We introduce a blind spot method to create image changes contingent on eye movements. One challenge of eye movement research is triggering display changes contingent on gaze. The eye-tracking system must capture the image of the eye, discover and track the pupil and corneal reflections to estimate the gaze position, and then transfer this data to the computer that updates the display. All of these steps introduce delays that are often difficult to predict. To avoid these issues, we describe a simple blind spot method to generate gaze contingent display manipulations without any eye-tracking system and/or display controls.

6.
Commun Biol ; 4(1): 125, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504896

ABSTRACT

Vision restoration is an ideal medical application for optogenetics, because the eye provides direct optical access to the retina for stimulation. Optogenetic therapy could be used for diseases involving photoreceptor degeneration, such as retinitis pigmentosa or age-related macular degeneration. We describe here the selection, in non-human primates, of a specific optogenetic construct currently tested in a clinical trial. We used the microbial opsin ChrimsonR, and showed that the AAV2.7m8 vector had a higher transfection efficiency than AAV2 in retinal ganglion cells (RGCs) and that ChrimsonR fused to tdTomato (ChR-tdT) was expressed more efficiently than ChrimsonR. Light at 600 nm activated RGCs transfected with AAV2.7m8 ChR-tdT, from an irradiance of 1015 photons.cm-2.s-1. Vector doses of 5 × 1010 and 5 × 1011 vg/eye transfected up to 7000 RGCs/mm2 in the perifovea, with no significant immune reaction. We recorded RGC responses from a stimulus duration of 1 ms upwards. When using the recorded activity to decode stimulus information, we obtained an estimated visual acuity of 20/249, above the level of legal blindness (20/400). These results lay the groundwork for the ongoing clinical trial with the AAV2.7m8 - ChR-tdT vector for vision restoration in patients with retinitis pigmentosa.


Subject(s)
Optogenetics , Photic Stimulation , Retinal Degeneration/therapy , Vision, Ocular/physiology , Animals , Equipment and Supplies , Female , Humans , Macaca fascicularis , Male , Optogenetics/instrumentation , Optogenetics/methods , Pattern Recognition, Visual/physiology , Photic Stimulation/instrumentation , Photic Stimulation/methods , Primates , Retinal Degeneration/physiopathology , Retinal Degeneration/rehabilitation , Therapies, Investigational/instrumentation , Therapies, Investigational/methods
7.
Front Physiol ; 11: 1042, 2020.
Article in English | MEDLINE | ID: mdl-32973560

ABSTRACT

Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.

8.
Elife ; 92020 09 17.
Article in English | MEDLINE | ID: mdl-32940607

ABSTRACT

Recent work has implicated the primate basal ganglia in visual perception and attention, in addition to their traditional role in motor control. The basal ganglia, especially the caudate nucleus 'head' (CDh) of the striatum, receive indirect anatomical connections from the superior colliculus (SC), a midbrain structure that is known to play a crucial role in the control of visual attention. To test the possible functional relationship between these subcortical structures, we recorded CDh neuronal activity of macaque monkeys before and during unilateral SC inactivation in a spatial attention task. SC inactivation significantly altered the attention-related modulation of CDh neurons and strongly impaired the classification of task-epochs based on CDh activity. Only inactivation of SC on the same side of the brain as recorded CDh neurons, not the opposite side, had these effects. These results demonstrate a novel interaction between SC activity and attention-related visual processing in the basal ganglia.


Subject(s)
Attention/physiology , Basal Ganglia/physiology , Caudate Nucleus/physiology , Macaca mulatta/physiology , Neurons/physiology , Superior Colliculi/physiology , Animals , Male
9.
Proc Natl Acad Sci U S A ; 117(25): 14453-14463, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32513717

ABSTRACT

Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci. The maps could be acquired in a single-hour session with relatively few presentations of the stimuli. The spatial resolution of the technology is illustrated by mapping patterns similar to ocular dominance (OD) columns within superficial and deep layers of the primary visual cortex. These acquisitions using fUS suggested that OD selectivity is mostly present in layer IV but with extensions into layers II/III and V. This imaging technology provides a new mesoscale approach to the mapping of brain activity at high spatiotemporal resolution in awake subjects within the whole depth of the cortex.


Subject(s)
Brain Mapping/methods , Visual Cortex/physiology , Wakefulness/physiology , Animals , Dominance, Ocular/physiology , Female , Macaca mulatta , Male , Photic Stimulation , Reproducibility of Results , Spatio-Temporal Analysis , Ultrasonography/methods , Visual Cortex/diagnostic imaging
10.
Nat Biomed Eng ; 4(2): 172-180, 2020 02.
Article in English | MEDLINE | ID: mdl-31792423

ABSTRACT

Retinal dystrophies and age-related macular degeneration related to photoreceptor degeneration can cause blindness. In blind patients, although the electrical activation of the residual retinal circuit can provide useful artificial visual perception, the resolutions of current retinal prostheses have been limited either by large electrodes or small numbers of pixels. Here we report the evaluation, in three awake non-human primates, of a previously reported near-infrared-light-sensitive photovoltaic subretinal prosthesis. We show that multipixel stimulation of the prosthesis within radiation safety limits enabled eye tracking in the animals, that they responded to stimulations directed at the implant with repeated saccades and that the implant-induced responses were present two years after device implantation. Our findings pave the way for the clinical evaluation of the prosthesis in patients affected by dry atrophic age-related macular degeneration.


Subject(s)
Macular Degeneration/rehabilitation , Saccades , Vision, Ocular/physiology , Visual Perception , Visual Prosthesis , Animals , Disease Models, Animal , Eye Movement Measurements , Macaca fascicularis , Macular Degeneration/physiopathology , Male , Photic Stimulation , Retinal Ganglion Cells/physiology
11.
Nat Commun ; 10(1): 1400, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30923310

ABSTRACT

Neuroimaging modalities such as MRI and EEG are able to record from the whole brain, but this comes at the price of either limited spatiotemporal resolution or limited sensitivity. Here, we show that functional ultrasound imaging (fUS) of the brain is able to assess local changes in cerebral blood volume during cognitive tasks, with sufficient temporal resolution to measure the directional propagation of signals. In two macaques, we observed an abrupt transient change in supplementary eye field (SEF) activity when animals were required to modify their behaviour associated with a change of saccade tasks. SEF activation could be observed in a single trial, without averaging. Simultaneous imaging of anterior cingulate cortex and SEF revealed a time delay in the directional functional connectivity of 0.27 ± 0.07 s and 0.9 ± 0.2 s for both animals. Cerebral hemodynamics of large brain areas can be measured at high spatiotemporal resolution using fUS.


Subject(s)
Cerebrovascular Circulation , Cognition/physiology , Frontal Lobe/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Saccades/physiology , Animals , Brain/diagnostic imaging , Brain/physiology , Echoencephalography , Eye Movements/physiology , Frontal Lobe/physiology , Functional Neuroimaging , Gyrus Cinguli/physiology , Macaca , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Task Performance and Analysis , Ultrasonography, Doppler, Transcranial
12.
PLoS Biol ; 16(10): e2005930, 2018 10.
Article in English | MEDLINE | ID: mdl-30365496

ABSTRACT

The basal ganglia are important for action selection. They are also implicated in perceptual and cognitive functions that seem far removed from motor control. Here, we tested whether the role of the basal ganglia in selection extends to nonmotor aspects of behavior by recording neuronal activity in the caudate nucleus while animals performed a covert spatial attention task. We found that caudate neurons strongly select the spatial location of the relevant stimulus throughout the task even in the absence of any overt action. This spatially selective activity was dependent on task and visual conditions and could be dissociated from goal-directed actions. Caudate activity was also sufficient to correctly identify every epoch in the covert attention task. These results provide a novel perspective on mechanisms of attention by demonstrating that the basal ganglia are involved in spatial selection and tracking of behavioral states even in the absence of overt orienting movements.


Subject(s)
Caudate Nucleus/physiology , Space Perception/physiology , Spatial Behavior/physiology , Animals , Attention/physiology , Basal Ganglia/physiology , Cues , Macaca mulatta , Male , Movement , Neurons , Primates , Psychomotor Performance/physiology , Reaction Time/physiology , Spatial Navigation/physiology
13.
Cereb Cortex ; 28(12): 4195-4209, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29069324

ABSTRACT

The enhancement of neuronal responses in many visual areas while animals perform spatial attention tasks has widely been thought to be the neural correlate of visual attention, but it is unclear whether the presence or absence of this modulation contributes to our striking inability to notice changes in change blindness examples. We asked whether neuronal responses in visual area V4 and the lateral intraparietal area (LIP) in posterior parietal cortex could explain the limited ability of subjects to attend multiple items in a display. We trained animals to perform a change detection task in which they had to compare 2 arrays of stimuli separated briefly in time and found that each animal's performance decreased as function of set-size. Neuronal discriminability in V4 was consistent across set-sizes, but decreased for higher set-sizes in LIP. The introduction of a reward bias produced attentional enhancement in V4, but this could not explain the vast improvement in performance, whereas the enhancement in LIP responses could. We suggest that behavioral set-size effects and the marked improvement in performance with focused attention may not be related to response enhancement in V4 but, instead, may occur in or on the way to LIP.


Subject(s)
Attention/physiology , Neurons/physiology , Parietal Lobe/physiology , Pattern Recognition, Visual/physiology , Reward , Visual Cortex/physiology , Animals , Macaca mulatta , Male , Photic Stimulation
14.
J Neurophysiol ; 114(5): 2637-48, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26334012

ABSTRACT

When looking around at the world, we can only attend to a limited number of locations. The lateral intraparietal area (LIP) is thought to play a role in guiding both covert attention and eye movements. In this study, we tested the involvement of LIP in both mechanisms with a change detection task. In the task, animals had to indicate whether an element changed during a blank in the trial by making a saccade to it. If no element changed, they had to maintain fixation. We examine how the animal's behavior is biased based on LIP activity prior to the presentation of the stimulus the animal must respond to. When the activity was high, the animal was more likely to make an eye movement toward the stimulus, even if there was no change; when the activity was low, the animal either had a slower reaction time or maintained fixation, even if a change occurred. We conclude that LIP activity is involved in both covert and overt attention, but when decisions about eye movements are to be made, this role takes precedence over guiding covert attention.


Subject(s)
Attention/physiology , Neurons/physiology , Parietal Lobe/physiology , Psychomotor Performance , Saccades , Visual Perception/physiology , Animals , Macaca mulatta , Male , Photic Stimulation , Time Factors
15.
Trends Cogn Sci ; 18(9): 457-64, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24953964

ABSTRACT

Attention is commonly thought to be important for managing the limited resources available in sensory areas of the neocortex. Here we present an alternative view that attention arises as a byproduct of circuits centered on the basal ganglia involved in value-based decision making. The central idea is that decision making depends on properly estimating the current state of the animal and its environment and that the weighted inputs to the currently prevailing estimate give rise to the filter-like properties of attention. After outlining this new framework, we describe findings from physiological, anatomical, computational, and clinical work that support this point of view. We conclude that the brain mechanisms responsible for attention employ a conserved circuit motif that predates the emergence of the neocortex.


Subject(s)
Attention/physiology , Brain/physiology , Decision Making/physiology , Models, Neurological , Neural Pathways/physiology , Humans , Nerve Net
16.
Eur J Neurosci ; 33(11): 1982-90, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21645094

ABSTRACT

Orienting visual attention is of fundamental importance when viewing a visual scene. One of the areas thought to play a role in the guidance of this process is the posterior parietal cortex. In this review, we will describe the way the lateral intraparietal area (LIP) of the posterior parietal cortex acts as a priority map to help guide the allocation of covert attention and eye movements (overt attention). We will explain the concept of a priority map and then show that LIP activity is biased by both bottom-up stimulus-driven factors and top-down cognitive influences, and that this activity can be used to predict the locus of covert attention and initial saccadic latencies in simple visual search tasks. We will then describe evidence for how this system acts during covert visual search and how its activity could be used to optimize overt visual search performance.


Subject(s)
Attention/physiology , Exploratory Behavior/physiology , Eye Movements/physiology , Orientation/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Animals , Space Perception/physiology
17.
Cereb Cortex ; 21(11): 2498-506, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21422270

ABSTRACT

When exploring a visual scene, some objects perceptually popout because of a difference of color, shape, or size. This bottom-up information is an important part of many models describing the allocation of visual attention. It has been hypothesized that the lateral intraparietal area (LIP) acts as a "priority map," integrating bottom-up and top-down information to guide the allocation of attention. Despite a large literature describing top-down influences in LIP, the presence of a pure salience response to a salient stimulus defined by its static features alone has not been reported. We compared LIP responses with colored salient stimuli and distractors in a passive fixation task. Many LIP neurons responded preferentially to 1 of the 2 colored stimuli, yet the mean responses to the salient stimuli were significantly higher than to distractors, independent of the features of the stimuli. These enhanced responses were significant within 75 ms, and the mean responses to salient and distractor stimuli were tightly correlated, suggesting a simple gain control. We propose that a pure salience signal rapidly appears in LIP by collating salience signals from earlier visual areas. This contributes to the creation of a priority map, which is used to guide attention and saccades.


Subject(s)
Attention/physiology , Parietal Lobe/physiology , Visual Perception/physiology , Animals , Macaca mulatta , Male , Patch-Clamp Techniques , Photic Stimulation , Saccades/physiology
18.
BMC Neurosci ; 10: 140, 2009 Nov 30.
Article in English | MEDLINE | ID: mdl-19948014

ABSTRACT

BACKGROUND: The shading of an object provides an important cue for recognition, especially for determining its 3D shape. However, neuronal mechanisms that allow the recovery of 3D shape from shading are poorly understood. The aim of our study was to determine the neuronal basis of 3D shape from shading coding in area V4 of the awake macaque monkey. RESULTS: We recorded the responses of V4 cells to stimuli presented parafoveally while the monkeys fixated a central spot. We used a set of stimuli made of 8 different 3D shapes illuminated from 4 directions (from above, the left, the right and below) and different 2D controls for each stimulus. The results show that V4 neurons present a broad selectivity to 3D shape and illumination direction, but without a preference for a unique illumination direction. However, 3D shape and illumination direction selectivities are correlated suggesting that V4 neurons can use the direction of illumination present in complex patterns of shading present on the surface of objects. In addition, a vast majority of V4 neurons (78%) have statistically different responses to the 3D and 2D versions of the stimuli, while responses to 3D are not systematically stronger than those to 2D controls. However, a hierarchical cluster analysis showed that the different classes of stimuli (3D, 2D controls) are clustered in the V4 cells response space suggesting a coding of 3D stimuli based on the population response. The different illumination directions also tend to be clustered in this space. CONCLUSION: Together, these results show that area V4 participates, at the population level, in the coding of complex shape from the shading patterns coming from the illumination of the surface of corrugated objects. Hence V4 provides important information for one of the steps of cortical processing of the 3D aspect of objects in natural light environment.


Subject(s)
Action Potentials/physiology , Form Perception/physiology , Neurons/physiology , Visual Cortex/physiology , Analysis of Variance , Animals , Cluster Analysis , Female , Fixation, Ocular/physiology , Lighting , Macaca mulatta , Male , Orientation/physiology , Photic Stimulation , Signal Processing, Computer-Assisted
19.
J Neurophysiol ; 102(6): 3481-91, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19812286

ABSTRACT

In everyday life, we efficiently find objects in the world by moving our gaze from one location to another. The efficiency of this process is brought about by ignoring items that are dissimilar to the target and remembering which target-like items have already been examined. We trained two animals on a visual foraging task in which they had to find a reward-loaded target among five task-irrelevant distractors and five potential targets. We found that both animals performed the task efficiently, ignoring the distractors and rarely examining a particular target twice. We recorded the single unit activity of 54 neurons in the lateral intraparietal area (LIP) while the animals performed the task. The responses of the neurons differentiated between targets and distractors throughout the trial. Further, the responses marked off targets that had been fixated by a reduction in activity. This reduction acted like inhibition of return in saliency map models; items that had been fixated would no longer be represented by high enough activity to draw an eye movement. This reduction could also be seen as a correlate of reward expectancy; after a target had been identified as not containing the reward the activity was reduced. Within a trial, responses to the remaining targets did not increase as they became more likely to yield a result, suggesting that only activity related to an event is updated on a moment-by-moment bases. Together, our data show that all the neural activity required to guide efficient search is present in LIP. Because LIP activity is known to correlate with saccade goal selection, we propose that LIP plays a significant role in the guidance of efficient visual search.


Subject(s)
Attention/physiology , Discrimination, Psychological/physiology , Fixation, Ocular/physiology , Motion Perception/physiology , Neurons/physiology , Parietal Lobe/cytology , Action Potentials/physiology , Animals , Brain Mapping , Macaca mulatta , Magnetic Resonance Imaging/methods , Photic Stimulation/methods , Reaction Time/physiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...