Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 5078, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36977810

ABSTRACT

The world's largest current Cu resource is volcanic arc-hosted, porphyry copper deposits. Whether unusual parental magmas or fortuitous combinations of processes accompanying emplacement of common parental arc magmas (e.g., basalt) is required for ore deposit formation, remains unclear. Spatial and tectonic associations of adakite (andesite with high La/Yb, Sr/Y) with porphyries exist, but genetic links are debated. Delayed saturation with Cu-bearing sulfides consequent to elevated redox state seems essential for late-stage exsolution of Cu-bearing hydrothermal fluids. Partial melting of igneous layers of subducted, hydrothermally altered oceanic crust in the eclogite stability field are invoked to account for andesitic compositions, residual garnet signatures, and the putative oxidised character of adakites. Alternative petrogeneses include partial melting of lower crustal, garnet-bearing sources and extensive intra-crustal amphibole fractionation. Here we demonstrate mineral-hosted, adakite glass (formerly melt) inclusions in lavas erupted subaqueously in the New Hebrides arc are oxidised relative to island arc (and mid-ocean ridge) basalts, are H2O-S-Cl-rich, and moderately enriched in Cu. Polynomial fitting of chondrite-normalised, rare earth element abundance patterns shows the precursors of these erupted adakites were unequivocally derived from partial melting of subducted slab, and represent optimal porphyry copper progenitors.

2.
Nat Commun ; 12(1): 1723, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741949

ABSTRACT

The magmatic character of early subduction zone and arc development is unlike mature systems. Low-Ti-K tholeiitic basalts and boninites dominate the early Izu-Bonin-Mariana (IBM) system. Basalts recovered from the Amami Sankaku Basin (ASB), underlying and located west of the IBM's oldest remnant arc, erupted at ~49 Ma. This was 3 million years after subduction inception (51-52 Ma) represented by forearc basalt (FAB), at the tipping point between FAB-boninite and typical arc magmatism. We show ASB basalts are low-Ti-K, aluminous spinel-bearing tholeiites, distinct compared to mid-ocean ridge (MOR), backarc basin, island arc or ocean island basalts. Their upper mantle source was hot, reduced, refractory peridotite, indicating prior melt extraction. ASB basalts transferred rapidly from pressures (~0.7-2 GPa) at the plagioclase-spinel peridotite facies boundary to the surface. Vestiges of a polybaric-polythermal mineralogy are preserved in this basalt, and were not obliterated during persistent recharge-mix-tap-fractionate regimes typical of MOR or mature arcs.

3.
Nat Commun ; 9(1): 3500, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158630

ABSTRACT

Subduction zone magmas are more oxidised on eruption than those at mid-ocean ridges. This is attributed either to oxidising components, derived from subducted lithosphere (slab) and added to the mantle wedge, or to oxidation processes occurring during magma ascent via differentiation. Here we provide direct evidence for contributions of oxidising slab agents to melts trapped in the sub-arc mantle. Measurements of sulfur (S) valence state in sub-arc mantle peridotites identify sulfate, both as crystalline anhydrite (CaSO4) and dissolved SO42- in spinel-hosted glass (formerly melt) inclusions. Copper-rich sulfide precipitates in the inclusions and increased Fe3+/∑Fe in spinel record a S6+-Fe2+ redox coupling during melt percolation through the sub-arc mantle. Sulfate-rich glass inclusions exhibit high U/Th, Pb/Ce, Sr/Nd and δ34S (+ 7 to + 11‰), indicating the involvement of dehydration products of serpentinised slab rocks in their parental melt sources. These observations provide a link between liberated slab components and oxidised arc magmas.

4.
Nat Commun ; 6: 6554, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25761912

ABSTRACT

Intra-plate basalt isotopic trends require mixing between enriched mantle components (EM1, EM2, HIMU) and a primordial component with high (3)He/(4)He termed FOZO. However, proportions of components, geometric distributions within individual plumes, relative proportions of melting components and loci of mixing of melts and residues remain poorly understood. Here we present new Hf-Nd isotopic data of dredged sea floor basalts from the northern Lau backarc basin, ~250 km south of the subaerial and submerged Samoan chain, with high (3)He/(4)He, (20)Ne/(22)Ne and primordial (129)Xe/(130)Xe, characteristic of the FOZO component. Combined Hf-Nd-noble gas isotope systematics require mixing of refractory, sub-northwestern Lau backarc mantle only with a spatially restricted FOZO component, most plausibly sourced from part of the Samoan plume. Other geographically restricted and possibly volumetrically minor enriched Samoan plume components are not detectable in northern Lau backarc samples, consistent with selective plume ingress of the FOZO component beneath the basin.

5.
Nature ; 431(7011): 975-8, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15496920

ABSTRACT

A relationship between convergent margin magmas and copper-gold ore mineralization has long been recognized. The nature of the genetic link is controversial, particularly whether the link is due to high-oxygen-fugacity (fO2) melts and fluids released from subducted slabs or to brine exsolution during magmatic evolution. For submarine, subduction-related volcanic glasses from the eastern Manus basin, Papua New Guinea, we here report abrupt decreases in gold and copper abundances, coupled with a switch in the behaviour of titanium and iron from concentration increases to decreases as SiO2 rises. We propose that the abrupt depletion in gold and copper results from concurrent sulphur reduction as a result of fO2 buffering, causing enhanced formation of copper-gold hydrosulphide complexes that become scavenged from crystallizing melts into cogenetic magmatic aqueous fluids. This process is particularly efficient in oxidized arc magmas with substantial sulphate. We infer that subsequent migration and cooling of exsolved aqueous fluids create links between copper-gold mineralization and arc magmatism in the Manus basin, and at convergent margins in general.

6.
Nature ; 422(6929): 294-7, 2003 Mar 20.
Article in English | MEDLINE | ID: mdl-12646918

ABSTRACT

Variations in the 187Os/188Os isotopic signature of mantle and mantle-derived rocks have been thought to provide a powerful chemical tracer of deep Earth structure. Many studies have inferred from such data that a long-lived, high-rhenium component exists in the deep mantle (187Re is the parent isotope decaying to 187Os, with a half-life of approximately 42 billion years), and that this reservoir probably consists of subducted oceanic crust. The interpretation of these isotopic signatures is, however, dependent on accurate estimates of rhenium and osmium concentrations in all of the main geochemical reservoirs, and the crust has generally been considered to be a minor contributor to such global budgets. In contrast, we here present observations of high rhenium concentrations and low Yb/Re ratios in arc-type melt inclusions. These results indicate strong enrichment of rhenium in undegassed arc rocks, and consequently the continental crust, which results in a crustal estimate of 2 p.p.b. rhenium, as compared to previous estimates of 0.4-0.2 p.p.b. (refs 4, 5). Previous determinations of rhenium in arc materials, which were largely measured on subaerially erupted samples, are likely to be in error owing to rhenium loss during degassing. High mantle-to-crust rhenium fluxes, as observed here, require a revaluation of geochemical models based on the 187Re-187Os decay system.

SELECTION OF CITATIONS
SEARCH DETAIL
...