Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 52(30): 10294-10297, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37431615

ABSTRACT

[CuII(chxn)2I]I (chxn = 1R,2R-diaminocyclohexane) has been synthesized, which is the first report of an iodide-bridged Cu(II) chain structure. This chain compound shows S = 1/2 Heisenberg weak antiferromagnetism (J = -0.3 cm-1) and magnetic relaxation (τ = 43 ms at 1.8 K) with a Raman process in a static field.

2.
Inorg Chem ; 59(18): 13489-13501, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32907320

ABSTRACT

The preparation, structures, and electrochemical and magnetic properties supported by density functional theory (DFT) calculations of three new copper(II) compounds with [1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline 1,1-dioxide (td) and its radical anion (td·-) are reported: {[CuIICl(td)](µ-Cl)2[CuIICl(td)]} (1), which incorporates only neutral td ligands; [CuIICl(td·-)(td)]·2MeCN (2), which comprises one neutral td and one radical td·-; and PPN[CuIICl(td·-)2]·2DMA (3), where CuII ions are coordinated by two radical anions td·- (DMA, dimethylacetamide; PPN+, the bis(triphenylphosphine)iminium cation). All three compounds show interesting paramagnetic behavior with low-temperature features indicating significant antiferromagnetic coupling. The magnetic properties of 1 are dominated by CuII···CuII interactions (JCuCu) mediated through the Cl- bridges, while the magnetic properties of 2 and 3 are governed mainly by the td·-···td·- (Jtdtd) and CuII-td·- (JCutd) exchange interactions. The structure of 2 features only two major magnetic coupling pathways enabling the fitting of experimental data with Jtdtd = -36.0(5) cm-1 and JCutd = -12.6(2) cm-1 only. Compound 3 exhibits a complex network of magnetic contacts. Attempt to approximate its magnetic behavior using only a local magnetic contacts model resulted in Jtdtd = -5.6(1) cm-1 and two JCutd constants, -12.4(2) and -22.6(4) cm-1. The experimental fitting is critically compared with the results of broken symmetry density functional theory (BS DFT) calculations for inter- and intramolecular contacts. More consistent results were obtained with the M06 functional as opposed to popular B3LYP, which encountered problems reproducing some of the experimental intermolecular exchange interactions. Electrochemical measurements of 2 and 3 in MeCN showed three reversible nearly overlapping redox peaks appearing in a narrow potential range of -600 to -100 mV vs Fc/Fc+. Small differences between the redox events suggest that such compounds may be good candidates for new switchable materials, where the electron transfer between the metal and the ligand center is triggered by temperature, pressure, or light (valence tautomerism).

3.
Dalton Trans ; 49(34): 11942-11949, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32812595

ABSTRACT

Propeller-like lanthanide complexes with suitable chiral ligand scaffolds are highly desired as they combine chirality with possible magnetic bistability. However, the library of relevant chiral lanthanide-based molecules is quite limited. Herein we present the preparation, structures, magnetic behavior as well as EPR studies of a series of propeller-shaped lanthanide Single Ion Magnets (SIMs). Coordination of the smallest helicene-type molecule 1,10-phenanthroline-N,N'-dioxide (phendo) to LnIII ions results in the formation of homoleptic complexes [LnIII(phendo)4](NO3)3·xMeOH (Ln = Gd, Er, Yb) Gd, Er and Yb, where four phendos encircle the metal center equatorially in a four-bladed propeller fashion. The magnetization dynamics in these systems is studied by magnetic measurements and EPR spectroscopy for non-diluted as well as solid state dilutions of Er and Yb in a diamagnetic [YIII(phendo)4](NO3)3·xMeOH (Y) matrix. Careful analysis of the slow magnetic relaxation in the diluted samples can be described by a combination of Raman and Orbach relaxation mechanisms. The most important finding concerns the identical power law τ≈T-3 describing the anomalous Raman relaxation for all three reported compounds diluted in the Y matrix. This identical power law strongly suggests that the exponent of the Raman relaxation process in the series of solid-state diluted isostructural compounds is practically independent of the metal ion (as long as the molar mass changes are negligible) and highlights a possible experimental strategy towards reliable Raman relaxation determination.

4.
Chemistry ; 26(49): 11187-11198, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32227503

ABSTRACT

Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.

5.
J Phys Chem Lett ; 11(4): 1508-1515, 2020 Feb 20.
Article in English | MEDLINE | ID: mdl-31994400

ABSTRACT

A homoleptic gadolinium(III) complex with the smallest helicene-type ligand, 1,10-phenanthroline-N,N'-dioxide (phendo) [Gd(phendo)4](NO3)3·xMeOH (phendo = 1,10-phenanthroline-N,N'-dioxide, MeOH = methanol), shows slow relaxation of the magnetization characteristic for Single Ion Magnets (SIM), despite negligible magnetic anisotropy, confirmed by ab initio calculations. Solid state dilution magnetic and EPR studies reveal that the magnetization dynamics of the [Gd(phendo)4]3+ cation is controlled mainly by a Raman process. Pulsed EPR experiments demonstrate long phase memory times (up to 2.7 µs at 5 K), enabling the detection of Rabi oscillations at 20 K, which confirms coherent control of its spin state.

6.
J Am Chem Soc ; 141(48): 19067-19077, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31747269

ABSTRACT

Magnetic photoswitching is a highly important but relatively rare phenomenon for enabling optical writing/reading of the magnetic state of a molecule. In this work, an unprecedented site-selective double photoswitching is reported from the assembly of two different "photomagnetic chromophores" into a single hexanuclear molecule: namely, a spin-crossover Fe(II) center exhibiting light-induced excited spin state trapping (LIESST) and a photochemically active octacyanometalate(IV) unit. Four different magnetization levels are accessible through the appropriate combination of violet/red light and temperature, results that highlight the potential of photomagnetic molecules as future molecular memory cells.

7.
Inorg Chem ; 56(7): 4021-4027, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28322558

ABSTRACT

A building block approach has been used to prepare a new family of hexanuclear magnetic molecules Mn4Nb2, Fe4Nb2, and Co4Nb2 of general formula {[MII(tmphen)2]4[NbIV(CN)8]2}·solv (M = Mn, Fe, Co; tmphen = 3,4,7,8-tetramethyl-1,10-phenanthroline; solv = MeOH and/or H2O). Mn4Nb2 exhibits a magnetocaloric effect at temperatures close to 1.8 K, and Fe4Nb2 undergoes an incomplete gradual spin crossover and a photomagnetic response related to light-induced excited spin state trapping.

8.
Inorg Chem ; 54(10): 4724-36, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25946010

ABSTRACT

Complexes of lanthanides(III) (Ce-Yb) with 2,2'-bis(2-oxazoline) (Box) combined with octacyanidomolybdate(V) gave a series of magneto-luminescent coordination polymers, {[Ln(III)(Box)n(DMF)m][Mo(V)(CN)8]}·x(solvent) (1-12). They are built of cyanido-bridged layers of a mixed 4- and 8-metal rings topology and show unique sliding of layers dependent on a 4f metal ion. For light lanthanides, dominant phase A, {[Ln(III)(Box)2(DMF)2][Mo(V)(CN)8]}·1.5MeCN (Ln = Ce, 1; Pr, 2; Nd, 3), consists of ideally aligned, not shifted layers, giving large channels (13.7 × 14.0 Å). Intermediate lanthanides reveal phase B, {[Ln(III)(Box)2(DMF)2] [Mo(V)(CN)8]}·H2O (Ln = Sm, 4; Eu, 5; Gd, 6; Tb, 7; Dy, 8), of smaller pores (8.4 × 10.6 Å) due to layer-H2O hydrogen bonding, which induces sliding of CN(-)-bridged layers. Heavy lanthanides show phase C, {[Ln(III)(Box)(DMF)3][Mo(V)(CN)8]}·MeCN (Ln = Ho, 9; Er, 10; Tm, 11; Yb, 12), with large channels (13.7 × 13.7 Å) of a similar size to light lanthanides. This effect comes from the changes in Ln(III) coordination sphere affecting solvent-layer interactions. Compounds 1-12 reveal diverse emission depending on the interaction between Ln(III) and Box luminophors. For 2-5, 9, and 12, the ligand-to-metal energy-transfer-induced visible f-centered emission ranging from green for Ho(III)-based 9, orange from Sm(III)-based 4, to red for Pr(III)- and Eu(III)-containing 2 and 5, respectively. Near-infrared emission was found for 2-4, 9, and 12. Red phosphorescence of Box was detected for Gd(III)-based 6, whereas the selective excitation of ligand or Ln(III) excited states resulting in the switchable red to green emission was found for Tb(III)-based 7. The materials revealed Ln(III)-Mo(V) magnetic coupling leading to ferromagnetism below 2.0 and 2.2 K for 4 and 7, respectively. The onset of magnetic ordering at low temperatures was found for 6 and 8. Compounds 1-12 form a unique family of cyanido-bridged materials of a bifunctional magneto-luminescence character combined with dynamic structural features.

9.
Sci Prog ; 98(Pt 4): 346-78, 2015.
Article in English | MEDLINE | ID: mdl-26790175

ABSTRACT

Molecular magnetism draws from the fundamental ideas of structural chemistry and combines them with experimental physics resulting in one of the highest profile current topics, namely molecular materials that exhibit multifunctionality. Recent advances in the design of new generations of multifunctional molecular magnets that retain the functions of the building blocks and exhibit non-trivial magnetic properties at higher temperatures provide promising evidence that they may be useful for the future construction of nanoscale devices. This article is not a complete review but is rather an introduction into thefascinating world of multifunctional solids with magnetism as the leitmotif. We provide a subjective selection and discussion of the most inspiring examples of multifunctional molecular magnets: magnetic sponges, guest-responsive magnets, molecular magnets with ionic conductivity, photomagnets and non-centrosymmetric and chiral magnets.

10.
Chemistry ; 20(23): 7144-59, 2014 Jun 02.
Article in English | MEDLINE | ID: mdl-24740567

ABSTRACT

Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)-iPr-Pybox (2,6-bis[4-isopropyl-2-oxazolin-2-yl]pyridine) and (SRSR/RSRS)-Ind-Pybox (2,6-bis[8H-indeno[1,2-d]oxazolin-2-yl]pyridine), have been combined with lanthanide ions (Gd(3+), Nd(3+)) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN(-)-bridged coordination chains: {[Ln(III)(SS/RR-iPr-Pybox)(dmf)4]3[W(V)(CN)8]3}n ⋅dmf⋅4 H2O (Ln = Gd, 1-SS and 1-RR; Ln = Nd, 2-SS and 2-RR) and {[Ln(III)(SRSR/RSRS-Ind-Pybox)(dmf)4][W(V)(CN)8]}n⋅5 MeCN⋅4 MeOH (Ln = Gd, 3-SRSR and 3-RSRS; Ln = Nd, 4-SRSR and 4-RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200-450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the Gd(III)-W(V) chains show dominant ligand-based red phosphorescence, with λmax ≈660 nm for 1-(SS/RR) and 680 nm for 3-(SRSR/RSRS). The Nd(III)-W(V) chains, 2-(SS/RR) and 4-(SRSR/RSRS), exhibit near-infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra-f (4)F3/2 → (4)I9/2,11/2,13/2 transitions of the Nd(III) centers. This emission is realized through efficient ligand-to-metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [W(V)(CN)8](3-) moieties connected by cyanide bridges, 1-(SS/RR) and 3-(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between Gd(III) (SGd = 7/2) and W(V) (SW = 1/2) centers with J1-(SS) = -0.96(1) cm(-1), J1-(RR) =-0.95(1) cm(-1), J3-(SRSR) = -0.91(1) cm(-1), and J3-(RSRS) =-0.94(1) cm(-1). 2-(SS/RR) and 4-(SRSR/RSRS) display ferromagnetic coupling within their Nd(III)-NC-W(V) linkages.

SELECTION OF CITATIONS
SEARCH DETAIL
...