Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 29(10): 105602, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28071598

ABSTRACT

We investigate the sub gap properties of a three terminal Josephson T-junction composed of topologically superconducting wires connected by a normal metal region. This system naturally hosts zero energy Andreev bound states which are of self-conjugate Majorana nature and we show that they are, in contrast to ordinary Majorana zero modes, spatially extended in the normal metal region. If the T-junction respects time-reversal symmetry, we show that a zero mode is distributed only in two out of three arms in the junction and tuning the superconducting phases allows for transfer of the mode between the junction arms. We further provide tunneling conductance calculations showing that these features can be detected in experiments. Our findings suggest an experimental platform for studying the nature of spatially extended Majorana zero modes.

2.
Phys Rev Lett ; 115(23): 237203, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26684140

ABSTRACT

We show that all so(N)_{1} universality class quantum criticalities emerge when one-dimensional generalized cluster models are perturbed with Ising or Zeeman terms. Each critical point is described by a low-energy theory of N linearly dispersing fermions, whose spectrum we show to precisely match the prediction by so(N)_{1} conformal field theory. Furthermore, by an explicit construction we show that all the cluster models are dual to nonlocally coupled transverse field Ising chains, with the universality of the so(N)_{1} criticality manifesting itself as N of these chains becoming critical. This duality also reveals that the symmetry protection of cluster models arises from the underlying Ising symmetries and it enables the identification of local representations for the primary fields of the so(N)_{1} conformal field theories. For the simplest and experimentally most realistic case that corresponds to the original one-dimensional cluster model with local three-spin interactions, our results show that the su(2)_{2}≃so(3)_{1} Wess-Zumino-Witten model can emerge in a local, translationally invariant, and Jordan-Wigner solvable spin-1/2 model.

3.
J Phys Condens Matter ; 27(40): 405701, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26401828

ABSTRACT

We theoretically investigate Josephson junctions with a phase shift of π in various proximity induced one-dimensional superconductor models. One of the salient experimental signatures of topological superconductors, namely the fractionalized 4π periodic Josephson effect, is closely related to the occurrence of a characteristic zero energy bound state in such junctions. We make a detailed analysis of a more general type of π-junctions coined 'phase winding junctions' where the phase of the order parameter rotates by an angle π while its absolute value is kept finite. Such junctions have different properties, also from a topological viewpoint, and there are no protected zero energy modes. We compare the phenomenology of such junctions in topological (p-wave) and trivial (s-wave) superconducting wires, and briefly discuss possible experimental probes. Furthermore, we propose a topological field theory that gives a minimal description of a wire with defects corresponding to π-junctions. This effective theory is a one-dimensional version of similar theories describing Majorana bound states in half-vortices of two-dimensional topological superconductors.

4.
Phys Rev Lett ; 108(20): 207201, 2012 May 18.
Article in English | MEDLINE | ID: mdl-23003180

ABSTRACT

We construct models of interacting itinerant non-Abelian anyons moving along one-dimensional chains, focusing, in particular, on itinerant Ising anyon chains, and derive effective anyonic t-J models for the low-energy sectors. Solving these models by exact diagonalization, we find a fractionalization of the anyons into charge and (non-Abelian) anyonic degrees of freedom--a generalization of spin-charge separation of electrons which occurs in Luttinger liquids. A detailed description of the excitation spectrum by combining spectra for charge and anyonic sectors requires a subtle coupling between charge and anyonic excitations at the microscopic level (which we also find to be present in Luttinger liquids), despite the macroscopic fractionalization.

5.
Phys Rev Lett ; 103(7): 070401, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19792620

ABSTRACT

Quantum mechanical systems, whose degrees of freedom are so-called su(2)k anyons, form a bridge between ordinary SU(2) quantum magnets (of arbitrary spin-S) and systems of interacting non-Abelian anyons. Anyonic spin-1/2 chains exhibit a topological protection mechanism that stabilizes their gapless ground states and which vanishes only in the limit (k-->infinity) of the ordinary spin-1/2 Heisenberg chain. For anyonic spin-1 chains the phase diagram closely mirrors the one of the biquadratic SU(2) spin-1 chain. Our results describe, at the same time, nucleation of different 2D topological quantum fluids within a "parent" non-Abelian quantum Hall state, arising from a macroscopic occupation with localized, interacting anyons. The edge states between the "nucleated" and the parent liquids are neutral, and correspond precisely to the gapless modes of the anyonic chains.

6.
Phys Rev Lett ; 102(18): 180401, 2009 May 08.
Article in English | MEDLINE | ID: mdl-19518845

ABSTRACT

We provide a simple way to obtain the fusion rules associated with elementary quasiholes over quantum Hall wave functions, in terms of domain walls. The knowledge of the fusion rules is helpful in the identification of the underlying conformal field theory describing the wave functions. We show that, for a certain two-parameter family (k,r) of wave functions, the fusion rules are those of su(r)k. In addition, we give an explicit conformal field theory construction of these states, based on the Mk(k+1,k+r) "minimal" theories. For r=2, these states reduce to the Read-Rezayi states. The "Gaffnian" wave function is the prototypical example for r>2, in which case the conformal field theory is nonunitary.

7.
Phys Rev Lett ; 101(5): 050401, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18764375

ABSTRACT

We show that chains of interacting Fibonacci anyons can support a wide variety of collective ground states ranging from extended critical, gapless phases to gapped phases with ground-state degeneracy and quasiparticle excitations. In particular, we generalize the Majumdar-Ghosh Hamiltonian to anyonic degrees of freedom by extending recently studied pairwise anyonic interactions to three-anyon exchanges. The energetic competition between two- and three-anyon interactions leads to a rich phase diagram that harbors multiple critical and gapped phases. For the critical phases and their higher symmetry end points we numerically establish descriptions in terms of two-dimensional conformal field theories. A topological symmetry protects the critical phases and determines the nature of gapped phases.

SELECTION OF CITATIONS
SEARCH DETAIL
...