Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Brain ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884572

ABSTRACT

Alpha-tubulin 4A encoding gene (TUBA4A) has been associated with familial amyotrophic lateral sclerosis (fALS) and fronto-temporal dementia (FTD), based on identification of likely pathogenic variants in patients from distinct ALS and FTD cohorts. By screening a multicentric French cohort of 448 unrelated probands presenting with cerebellar ataxia, we identified ultra-rare TUBA4A missense variants, all being absent from public databases and predicted pathogenic by multiple in-silico tools. In addition, gene burden analyses in the 100,000 genomes project (100KGP) showed enrichment of TUBA4A rare variants in the inherited ataxia group compared to controls (OR: 57.0847 [10.2- 576.7]; p = 4.02 x10-07). Altogether, we report 12 patients presenting with spasticity and/or cerebellar ataxia and harboring a predicted pathogenic TUBA4A missense mutation, including 5 confirmed de novo cases and a mutation previously reported in a large family presenting with spastic ataxia. Cultured fibroblasts from 3 patients harboring distinct TUBA4A missense showed significant alterations in microtubule organisation and dynamics, providing insight of TUBA4A variants pathogenicity. Our data confirm the identification of a hereditary spastic ataxia disease gene with variable age of onset, expanding the clinical spectrum of TUBA4A associated phenotypes.

2.
Int J Mol Sci ; 24(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37108493

ABSTRACT

The transition from targeted to exome or genome sequencing in clinical contexts requires quality standards, such as targeted sequencing, in order to be fully adopted. However, no clear recommendations or methodology have emerged for evaluating this technological evolution. We developed a structured method based on four run-specific sequencing metrics and seven sample-specific sequencing metrics for evaluating the performance of exome sequencing strategies to replace targeted strategies. The indicators include quality metrics and coverage performance on gene panels and OMIM morbid genes. We applied this general strategy to three different exome kits and compared them with a myopathy-targeted sequencing method. After having achieved 80 million reads, all-tested exome kits generated data suitable for clinical diagnosis. However, significant differences in the coverage and PCR duplicates were observed between the kits. These are two main criteria to consider for the initial implementation with high-quality assurance. This study aims to assist molecular diagnostic laboratories in adopting and evaluating exome sequencing kits in a diagnostic context compared to the strategy used previously. A similar strategy could be used to implement whole-genome sequencing for diagnostic purposes.


Subject(s)
High-Throughput Nucleotide Sequencing , Laboratories, Clinical , Exome Sequencing , High-Throughput Nucleotide Sequencing/methods , Whole Genome Sequencing , Base Sequence , Sequence Analysis, DNA/methods
3.
Brain ; 145(11): 3770-3775, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35883251

ABSTRACT

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Peripheral Nervous System Diseases , Replication Protein C , Humans , Bilateral Vestibulopathy/complications , Cerebellar Ataxia/genetics , Peripheral Nervous System Diseases/complications , Peripheral Nervous System Diseases/genetics , Reflex, Abnormal , RNA, Messenger/genetics , Syndrome , Replication Protein C/genetics
4.
Eur J Hum Genet ; 30(9): 1076-1082, 2022 09.
Article in English | MEDLINE | ID: mdl-35729264

ABSTRACT

This monocentric study included fifteen children under a year old in intensive care with suspected monogenic conditions for rapid trio exome sequencing (rES) between April 2019 and April 2021. The primary outcome was the time from blood sampling to rapid exome sequencing report to parents. All results were available within 16 days and were reported to parents in or under 16 days in 13 of the 15 individuals (86%). Six individuals (40%) received a diagnosis with rES, two had a genetic condition not diagnosed by rES. Eight individuals had their care impacted by their rES results, four were discharged or died before the results. This small-scale study shows that rES can be implemented in a regional University hospital with rapid impactful diagnosis to improve care in critically ill infants.


Subject(s)
Critical Illness , Exome , Adolescent , Child , Hospitals , Humans , Infant , Parents , Exome Sequencing/methods
6.
Eur J Hum Genet ; 29(2): 356-360, 2021 02.
Article in English | MEDLINE | ID: mdl-33161418

ABSTRACT

MobiDetails is an expert tool, online application which gathers useful data for the interpretation of DNA variants in the context of molecular diagnosis. It brings together in a single tool many sources of data, such as population genetics, various kinds of predictors, Human Genome Variation Society (HGVS) nomenclatures, curated databases, and access to various annotations. Accurate interpretation of DNA variants is crucial and can impact the patient care or have familial outcomes (prenatal diagnosis). Its importance will increase in the coming years with the expansion of the personalized medicine. MobiDetails is specifically designed to help with this task. Exonic or intronic substitutions and small insertions/deletions related to more than 18,000 human genes are easily submitted and annotated in real-time. It is a responsive website that can be accessed using mobiles or tablets during medical staff meetings. MobiDetails is based on publicly available resources, does not include any specific data on patients or phenotypes, and is freely available for academic use at https://mobidetails.iurc.montp.inserm.fr/MD/ .


Subject(s)
DNA , Databases, Genetic , Genetic Variation , Precision Medicine , Computational Biology , Genome, Human , Humans , INDEL Mutation , Phenotype , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...