Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 15(13): 4434-43, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17490886

ABSTRACT

Previous structure-activity and NMR studies on nociceptin/orphanin FQ (N/OFQ) demonstrated that Aib substitution of Ala(7) and/or Ala(11) increases the peptide potency through an alpha helix structure induction mechanism. On these bases we synthesised and evaluated pharmacologically in the mouse vas deferens assay a series of N/OFQ-NH(2) analogues substituted in position 7 and 11 with Calpha,alpha-disubstituted cyclic, linear and branched amino acids. None of the 20 novel N/OFQ analogues produced better results than [Aib(7)]N/OFQ-NH(2). Thus, this substitution was combined with other chemical modifications known to modulate peptide potency and/or efficacy generating compound 21 [Nphe(1)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (coded as UFP-111), compound 22 [(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-112) and compound 23 [Phe(1)Psi(CH(2)-NH)Gly(2)(pF)Phe(4)Aib(7)Arg(14)Lys(15)]N/OFQ-NH(2) (UFP-113). These novel peptides behaved as highly potent NOP receptor ligands showing full (UFP-112) and partial (UFP-113) agonist and pure antagonist (UFP-111) activities in a series of in vitro functional assays performed on pharmacological preparations expressing native as well as recombinant NOP receptors.


Subject(s)
Opioid Peptides/chemical synthesis , Opioid Peptides/pharmacology , Acylation , Alkylation , Amino Acids/chemistry , Animals , Binding, Competitive/drug effects , CHO Cells , Cricetinae , Cricetulus , Electric Stimulation , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , In Vitro Techniques , Ligands , Male , Mice , Muscle, Smooth/drug effects , Rats , Rats, Sprague-Dawley , Reference Standards , Vas Deferens/drug effects , Nociceptin
2.
J Biol Chem ; 281(30): 20809-20816, 2006 Jul 28.
Article in English | MEDLINE | ID: mdl-16720571

ABSTRACT

Neuropeptide S (NPS) has been recently recognized as the endogenous ligand for the previous orphan G-protein-coupled receptor GPR154, now referred to as the NPS receptor (NPSR). The NPS-NPSR receptor system regulates important biological functions such as sleeping/wakening, locomotion, anxiety, and food intake. To collect information on the mechanisms of interaction between NPS and its receptor, a classical structure-activity relationship study was performed. Human (h) NPS derivatives obtained by Ala and d-scan and N- and C-terminal truncation were assessed for their ability to stimulate calcium release in HEK293 cells expressing the human recombinant NPSR. The results of this study indicate that (i) the effect of hNPS is mimicked by the fragment hNPS-(1-10); (ii) Phe(2), Arg(3), and Asn(4) are crucial for biological activity; (iii) the sequence Thr(8)-Gly(9)-Met(10) is important for receptor activation, although with non-stringent chemical requirements; and (iv) the sequence Val(6)-Gly(7) acts as a hinge region between the two above-mentioned domains. However, the stimulatory effect of hNPS given intracerebroventricularly on mouse locomotor activity was not fully mimicked by hNPS-(1-10), suggesting that the C-terminal region of the peptide maintains importance for in vivo activity. In conclusion, this study identified the amino acid residues of this peptide most important for receptor activation.


Subject(s)
Neuropeptides/chemistry , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Line , Humans , Mice , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Rats , Receptors, G-Protein-Coupled/chemistry , Recombinant Proteins/chemistry , Structure-Activity Relationship
3.
J Med Chem ; 48(5): 1421-7, 2005 Mar 10.
Article in English | MEDLINE | ID: mdl-15743186

ABSTRACT

Previous structure-activity studies on nociceptin/orphanin FQ (N/OFQ) identified [Phe(1)Psi(CH(2)NH)Gly(2)]N/OFQ(1-13)-NH(2) and [Nphe(1)]N/OFQ(1-13)-NH(2) as a N/OFQ peptide receptor (NOP) partial agonist and pure antagonist, respectively. The addition of fluorine to the Phe(4) or the insertion of a further pair of basic amino acids Arg(14)-Lys(15) generate potent agonists. On the basis of these findings, we combined in the N/OFQ-NH(2) template the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) that increase the agonist potency with those conferring partial agonist (Phe(1)Psi(CH(2)NH)Gly(2)) or pure antagonist (Nphe(1)) properties. Twelve peptides were synthesized and pharmacologically evaluated in Chinese hamster ovary cells expressing the human recombinant NOP and in electrically stimulated mouse vas deferens and guinea pig ileum assays. All peptides behaved as NOP ligands; the chemical modifications Arg(14)-Lys(15) and (pF)Phe(4) increased ligand affinity/potency. Peptides with the normal Phe(1)-Gly(2) peptide bond behaved as full agonists, and those with the Phe(1)Psi(CH(2)NH)Gly(2) modification behaved as partial agonists, while those with the Nphe(1) modification behaved as partial agonists or pure antagonists depending on the presence or absence of the (pF)Phe(4) modification, respectively. The full agonist [(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), the partial agonist [Phe(1)Psi(CH(2)NH)Gly(2),(pF)Phe(4),Arg(14),Lys(15)]N/OFQ-NH(2), and the pure antagonist [Nphe(1),Arg(14),Lys(15)]N/OFQ-NH(2) represent the most potent peptide ligands for NOP.


Subject(s)
Narcotic Antagonists , Opioid Peptides/chemistry , Opioid Peptides/chemical synthesis , Receptors, Opioid/agonists , Animals , Binding, Competitive , CHO Cells , Cricetinae , Cricetulus , Electric Stimulation , Guinea Pigs , Humans , Ileum/physiology , In Vitro Techniques , Ligands , Male , Mice , Opioid Peptides/pharmacology , Radioligand Assay , Recombinant Proteins/agonists , Recombinant Proteins/antagonists & inhibitors , Structure-Activity Relationship , Vas Deferens/physiology , Nociceptin Receptor , Nociceptin
4.
Chemistry ; 11(7): 2061-70, 2005 Mar 18.
Article in English | MEDLINE | ID: mdl-15712334

ABSTRACT

Nociceptin is a heptadecapeptide whose sequence is similar to that of Dynorphin A, sharing a message domain characterized by two glycines and two aromatic residues, and a highly basic C-terminal address domain but, in spite of these similarities, displays no opioid activity. Establishing the relative importance of the message and address domains of nociceptin has so far been hampered by its extreme conformational flexibility. Here we show that mutants of this peptide, designed to increase the helical content in the address domain, can be employed to explain the mode of interaction with the NOP receptor. Nociceptin analogues in which Ala residues are substituted with aminoisobutyric acid (Aib) show a substantial increment of activity in their interaction with the NOP receptor. The increment of biological activity was attributed to the well-documented ability of Aib to induce helicity. Here we have verified this working hypothesis by a conformational investigation extended to new analogues in which the role of Aib is taken up by Leu. The NMR conformational analysis confirms that all Ala/Aib peptides as well as [Leu(7,11)]-N/OFQ-amide and [Leu(11,15)]-N/OFQ-amide mutants (N/OFQ=nociceptin/orphanin FQ) have comparable helix content in helix-promoting media. We show that the helical address domain of nociceptin can place key basic residues at an optimal distance from complementary acidic groups of the EL(2) loop of the receptor. Our structural data are used to rationalize pharmacological data which show that although [Leu(11,15)]-N/OFQ-amide has an activity comparable to those of Ala/Aib peptides, [Leu(7,11)]-N/OFQ-amide is less active than N/OFQ-amide. We hypothesize that bulky residues cannot be hosted in or near the hinge region (Thr(5)-Gly(6)-Ala(7)) without severe steric clash with the receptor. This hypothesis is also consistent with previous data on this hinge region obtained by systematic substitution of Thr, Gly, and Ala with Pro.


Subject(s)
Opioid Peptides/chemistry , Opioid Peptides/physiology , Receptors, Opioid/chemistry , Models, Molecular , Mutation , Opioid Peptides/genetics , Protein Structure, Secondary , Structure-Activity Relationship , Nociceptin Receptor , Nociceptin
5.
J Pept Sci ; 11(2): 85-90, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15635628

ABSTRACT

The vasoactive cyclic undecapeptide urotensin-II (U-II) has been identified as an endogenous ligand for the G-protein coupled receptor now referred to as the UT receptor. The U-II/UT receptor system might be relevant for cardiovascular functions. A structure-activity study of human U-II investigating 31 peptides in the rat aorta bioassay is reported. Ala- and D-scan investigations indicated that the sequence Phe6-Trp7-Lys8-Tyr9 is essential for biological activity and that Lys8 and Tyr9 are particularly important. These two residues were substituted with a series of coded and non-coded amino acids. These studies demonstrated that the positive charge of the primary aliphatic amine at position 8 and its relative spatial orientation is crucial for both receptor occupation and activation, while the only chemical requirement at position 9 is the presence of an aromatic moiety. Moreover, this study led to the identification of UT receptor partial agonists (compounds 23 and 24) which can be used as chemical templates for further investigations aimed at the identification of selective antagonists.


Subject(s)
Peptides, Cyclic/chemistry , Urotensins/chemistry , Urotensins/physiology , Animals , Aorta, Thoracic/drug effects , Humans , Male , Muscle Contraction/drug effects , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...