Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36538993

ABSTRACT

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Subject(s)
Protein Kinase Inhibitors , Protein-Tyrosine Kinases , Mice , Animals , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/chemistry , Disease Models, Animal , B7-2 Antigen
2.
Sci Rep ; 8(1): 13438, 2018 09 07.
Article in English | MEDLINE | ID: mdl-30194389

ABSTRACT

Protein interacting with C kinase (PICK1) is a scaffolding protein that is present in dendritic spines and interacts with a wide array of proteins through its PDZ domain. The best understood function of PICK1 is regulation of trafficking of AMPA receptors at neuronal synapses via its specific interaction with the AMPA GluA2 subunit. Disrupting the PICK1-GluA2 interaction has been shown to alter synaptic plasticity, a molecular mechanism of learning and memory. Lack of potent, selective inhibitors of the PICK1 PDZ domain has hindered efforts at exploring the PICK1-GluA2 interaction as a therapeutic target for neurological diseases. Here, we report the discovery of PICK1 small molecule inhibitors using a structure-based drug design strategy. The inhibitors stabilized surface GluA2, reduced Aß-induced rise in intracellular calcium concentrations in cultured neurons, and blocked long term depression in brain slices. These findings demonstrate that it is possible to identify potent, selective PICK1-GluA2 inhibitors which may prove useful for treatment of neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Carrier Proteins/antagonists & inhibitors , Dendritic Spines/metabolism , Neurodegenerative Diseases/metabolism , Nuclear Proteins/antagonists & inhibitors , Synapses/metabolism , Animals , Brain/pathology , Calcium/metabolism , Calcium Signaling , Carrier Proteins/metabolism , Cell Cycle Proteins , Dendritic Spines/pathology , Drug Design , Mice , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Nuclear Proteins/metabolism , PDZ Domains , Receptors, AMPA/metabolism , Synapses/pathology
3.
Bioorg Med Chem Lett ; 28(10): 1964-1971, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29636220

ABSTRACT

Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines.


Subject(s)
Protein Kinase C-theta/metabolism , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Animals , Binding Sites , Cell Line , Humans , Inhibitory Concentration 50 , Interleukin-2/metabolism , Mice , Mice, Knockout , Molecular Docking Simulation , Phosphorylation/drug effects , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Structure, Tertiary , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology
4.
Protein Sci ; 27(3): 672-680, 2018 03.
Article in English | MEDLINE | ID: mdl-29280296

ABSTRACT

The membrane protein interacting with kinase C1 (PICK1) plays a trafficking role in the internalization of neuron receptors such as the amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor. Reduction of surface AMPA type receptors on neurons reduces synaptic communication leading to cognitive impairment in progressive neurodegenerative diseases such as Alzheimer disease. The internalization of AMPA receptors is mediated by the PDZ domain of PICK1 which binds to the GluA2 subunit of AMPA receptors and targets the receptor for internalization through endocytosis, reducing synaptic communication. We planned to block the PICK1-GluA2 protein-protein interaction with a small molecule inhibitor to stabilize surface AMPA receptors as a therapeutic possibility for neurodegenerative diseases. Using a fluorescence polarization assay, we identified compound BIO124 as a modest inhibitor of the PICK1-GluA2 interaction. We further tried to improve the binding affinity of BIO124 using structure-aided drug design but were unsuccessful in producing a co-crystal structure using previously reported crystallography methods for PICK1. Here, we present a novel method through which we generated a co-crystal structure of the PDZ domain of PICK1 bound to BIO124.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Binding Sites/drug effects , Crystallography , Drug Design , Humans , Models, Molecular , Molecular Conformation , PDZ Domains , Protein Binding/drug effects , Receptors, AMPA/metabolism , Structure-Activity Relationship
5.
Protein Sci ; 26(2): 152-162, 2017 02.
Article in English | MEDLINE | ID: mdl-27727493

ABSTRACT

Germinal-center kinase-like kinase (GLK, Map4k3), a GCK-I family kinase, plays multiple roles in regulating apoptosis, amino acid sensing, and immune signaling. We describe here the crystal structure of an activation loop mutant of GLK kinase domain bound to an inhibitor. The structure reveals a weakly associated, activation-loop swapped dimer with more than 20 amino acids of ordered density at the carboxy-terminus. This C-terminal PEST region binds intermolecularly to the hydrophobic groove of the N-terminal domain of a neighboring molecule. Although the GLK activation loop mutant crystallized demonstrates reduced kinase activity, its structure demonstrates all the hallmarks of an "active" kinase, including the salt bridge between the C-helix glutamate and the catalytic lysine. Our compound displacement data suggests that the effect of the Ser170Ala mutation in reducing kinase activity is likely due to its effect in reducing substrate peptide binding affinity rather than reducing ATP binding or ATP turnover. This report details the first structure of GLK; comparison of its activation loop sequence and P-loop structure to that of Map4k4 suggests ideas for designing inhibitors that can distinguish between these family members to achieve selective pharmacological inhibitors.


Subject(s)
Mutation, Missense , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/chemistry , Amino Acid Substitution , Crystallography, X-Ray , Humans , Protein Domains , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Structure, Secondary
6.
Protein Sci ; 19(3): 429-39, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20052711

ABSTRACT

Bruton's tyrosine kinase (BTK), a member of the TEC family of kinases, plays a crucial role in B-cell maturation and mast cell activation. Although the structures of the unphosphorylated mouse BTK kinase domain and the unphosphorylated and phosphorylated kinase domains of human ITK are known, understanding the kinase selectivity profiles of BTK inhibitors has been hampered by the lack of availability of a high resolution, ligand-bound BTK structure. Here, we report the crystal structures of the human BTK kinase domain bound to either Dasatinib (BMS-354825) at 1.9 A resolution or to 4-amino-5-(4-phenoxyphenyl)-7H-pyrrolospyrimidin- 7-yl-cyclopentane at 1.6 A resolution. This data provides information relevant to the development of small molecule inhibitors targeting BTK and the TEC family of nonreceptor tyrosine kinases. Analysis of the structural differences between the TEC and Src families of kinases near the Trp-Glu-Ile motif in the N-terminal region of the kinase domain suggests a mechanism of regulation of the TEC family members.


Subject(s)
Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Agammaglobulinaemia Tyrosine Kinase , Amino Acid Sequence , Crystallography, X-Ray , Dasatinib , Enzyme Activation , Humans , Molecular Sequence Data , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein-Tyrosine Kinases/antagonists & inhibitors , Pyrimidines/chemistry , Pyrroles/chemistry , Thiazoles/chemistry
7.
Arterioscler Thromb Vasc Biol ; 28(4): 665-71, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18202322

ABSTRACT

OBJECTIVE: TGF-beta plays a significant role in vascular injury-induced stenosis. This study evaluates the efficacy of a novel, small molecule inhibitor of ALK5/ALK4 kinase, in the rat carotid injury model of vascular fibrosis. METHODS AND RESULTS: The small molecule, SM16, was shown to bind with high affinity to ALK5 kinase ATP binding site using a competitive binding assay and biacore analysis. SM16 blocked TGF-beta and activin-induced Smad2/3 phosphorylation and TGF-beta-induced plasminogen activator inhibitor (PAI)-luciferase activity in cells. Good overall selectivity was demonstrated in a large panel of kinase assays, but SM16 also showed nanomolar inhibition of ALK4 and weak (micromolar) inhibition of Raf and p38. In the rat carotid injury model, SM16 dosed once daily orally at 15 or 30 mg/kg SM16 for 14 days caused significant inhibition of neointimal thickening and lumenal narrowing. SM16 also prevented induction of adventitial smooth muscle alpha-actin-positive myofibroblasts and the production of intimal collagen, but did not decrease the percentage of proliferative cells. CONCLUSIONS: These results are the first to demonstrate the efficacy of an orally active, small-molecule ALK5/ALK4 inhibitor in a vascular fibrosis model and suggest the potential therapeutic application of these inhibitors in vascular fibrosis.


Subject(s)
Azabicyclo Compounds/pharmacology , Carotid Artery Injuries/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Activin Receptors, Type I/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Azabicyclo Compounds/administration & dosage , Azabicyclo Compounds/metabolism , Binding Sites , Carotid Artery Injuries/pathology , Carotid Artery Injuries/physiopathology , Cell Line , Fibroblasts/drug effects , Fibroblasts/pathology , Fibrosis , Humans , Male , Myoblasts, Smooth Muscle/drug effects , Myoblasts, Smooth Muscle/pathology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Transforming Growth Factor beta/physiology
8.
Bioconjug Chem ; 17(1): 179-88, 2006.
Article in English | MEDLINE | ID: mdl-16417267

ABSTRACT

PEGylation of IFN-alpha has been used successfully to improve the pharmacokinetic properties and efficacy of the drug. To prepare a PEGylated form of human interferon-beta-1a (IFN-beta-1a) suitable for testing in vivo, we have synthesized 20 kDa mPEG-O-2-methylpropionaldehyde and used it to modify the N-terminal alpha-amino group of the cytokine. The PEGylated protein retained approximately 50% of the activity of the unmodified protein and had significantly improved pharmacokinetic properties following intravenous administration in rats. The clearance and volume of distribution at steady state were reduced approximately 30-fold and approximately 4-fold, respectively, resulting in a significant increase in systemic exposure as determined by the area under the curve. The elimination half-life of the PEGylated protein was approximately 13-fold greater than for the unmodified protein. The unmodified and PEGylated proteins were tested for their ability to inhibit the formation of radially oriented blood vessels entering the periphery of human SK-MEL-1 melanoma tumors in athymic nude homozygous (nu/nu) mice. In a single dose comparison study, administration of 1 x 10(6) units of unmodified IFN-beta-1a resulted in a 29% reduction in vessel number, while 1 x 10(6) units of PEGylated IFN-beta-1a resulted in a 58% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle (control)-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. In a multiple versus single dose comparison study, daily administration of 1 x 10(6) units of unmodified IFN-beta-1a for 9 days resulted in a 51% reduction in vessel number, while a single dose of 1 x 10(6) units of the PEGylated protein resulted in a 66% reduction. Both treatments resulted in statistically significant reductions in mean vessel number as compared to the vehicle-treated mice, with the PEGylated IFN-beta-1a-treated mice showing a statistically significantly greater reduction in mean vessel number as compared to the unmodified IFN-beta-1a-treated mice. Therefore, the improved pharmacokinetic properties of the modified protein translated into improved efficacy. Since unmodified IFN-beta is used for the treatment of multiple sclerosis and hepatitis C virus infection, a PEGylated form of the protein such as 20 kDa mPEG-O-2-methylpropionaldehyde-modified IFN-beta-1a may serve as a useful adjunct for the treatment of these diseases. In addition, the antiangiogenic effects of PEGylated IFN-beta-1a may be harnessed for the treatment of certain cancers, either as a sole agent or in combination with other antitumor drugs.


Subject(s)
Aldehydes/therapeutic use , Antiviral Agents/therapeutic use , Interferon-beta/therapeutic use , Melanoma, Experimental/drug therapy , Neovascularization, Pathologic/prevention & control , Polyethylene Glycols/therapeutic use , Aldehydes/chemical synthesis , Aldehydes/pharmacokinetics , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Encephalomyocarditis virus/drug effects , Female , Half-Life , Humans , Interferon beta-1a , Interferon-beta/chemistry , Interferon-beta/pharmacokinetics , Melanoma, Experimental/blood supply , Melanoma, Experimental/pathology , Metabolic Clearance Rate , Mice , Mice, Nude , Neoplasm Transplantation , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacokinetics , Rats , Rats, Inbred Lew
9.
J Immunol ; 174(2): 609-13, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15634877

ABSTRACT

Engagement of the IFN-alphabeta receptor initiates multiple signaling cascades, including activation of the STAT. In this study, we demonstrate that IFN-alphabeta, although antiproliferative in wild-type CD4(+) or CD8(+) T cells, act as strong mitogens on their STAT1(-/-) counterparts. Furthermore, IFN-alphabeta exert little effect on apoptosis in wild-type cells, but are potent survival factors in the absence of STAT1. The antiapoptotic response in the absence of STAT1 is predominantly mediated by STAT3, and to a lesser extent by STAT5A/B. In contrast, the mitogenic IFN-alphabeta response gained through the absence of STAT1 is only marginally affected when STAT5A/B expression is also abrogated, but is completely dependent on STAT3 activation. These findings provide the first evidence for a function of STAT3 and STAT5A/B in the IFN-alphabeta response, and support a model in which the IFN-alphabeta receptor initiates both pro- and antiapoptotic responses through STAT1, and STAT3 and STAT5A/B, respectively.


Subject(s)
DNA-Binding Proteins/physiology , Interferon Type I/physiology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Trans-Activators/physiology , Animals , Apoptosis/genetics , Apoptosis/immunology , Cell Proliferation , Cell Survival/immunology , Cells, Cultured , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/genetics , Growth Inhibitors/pharmacology , Growth Inhibitors/physiology , Interferon Type I/pharmacology , Interferon-alpha/physiology , Interferon-beta/pharmacology , Interferon-beta/physiology , Lymphocyte Activation/genetics , Mice , Mice, Knockout , Milk Proteins/genetics , Mitogens/pharmacology , Mitogens/physiology , Resting Phase, Cell Cycle/genetics , Resting Phase, Cell Cycle/immunology , STAT1 Transcription Factor , STAT3 Transcription Factor , STAT5 Transcription Factor , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/cytology , Trans-Activators/deficiency , Trans-Activators/genetics
10.
Protein Expr Purif ; 34(2): 229-42, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15003256

ABSTRACT

To identify potential new clinical uses and routes of administration for human interferon-beta-1a (IFN-beta-1a), we have developed an expression and purification procedure for the preparation of highly purified rat interferon-beta (IFN-beta) suitable for testing in rat models of human disease. An expression vector containing the rat IFN-beta signal sequence and structural gene was constructed and transfected into Chinese hamster ovary (CHO) cells. The protein was purified from CHO cell conditioned medium and purified to > 99.5% purity using standard chromatographic techniques. Analytical characterization indicated that the protein was a heavily glycosylated monomeric protein, with two of the four predicted N-glycosylation sites occupied. Analysis of the attached oligosaccharides showed them to be a complex mixture of bi-antennary, tri-antennary, and tetra-antennary structures with a predominance of sialylated tri-antennary and tetra-antennary structures. Peptide mapping, N-terminal sequencing, and mass spectrometry confirmed the identity and integrity of the purified protein. The purified protein had a specific activity of 2.1x10(8)U/mg when assayed on rat RATEC cells, which is similar in magnitude to the potencies observed for murine IFN-beta and human IFN-beta-1a assayed on murine and human cells, respectively. We also prepared an N-terminally PEGylated form of rat IFN-beta in which a 20 kDa methoxy polyethylene glycol (PEG)-propionaldehyde was attached to the N-terminal alpha-amino group of Ile-1. The PEGylated protein, which retained essentially full in vitro antiviral activity, had improved pharmacokinetic parameters in rats as compared to the unmodified protein. Both the unmodified and PEGylated forms of rat IFN-beta will be useful for testing in rat models of human disease.


Subject(s)
Interferon Type I/metabolism , Interferon-beta/metabolism , Oligosaccharides/metabolism , Polyethylene Glycols/chemistry , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Glycosylation , Humans , Interferon Type I/genetics , Interferon Type I/isolation & purification , Interferon beta-1a , Interferon-beta/genetics , Mass Spectrometry , Rats , Recombinant Proteins
11.
Bioorg Med Chem Lett ; 13(24): 4355-9, 2003 Dec 15.
Article in English | MEDLINE | ID: mdl-14643325

ABSTRACT

We describe the discovery, using shape-based virtual screening, of a potent, ATP site-directed inhibitor of the TbetaRI kinase, an important and novel drug target for fibrosis and cancer. The first detailed report of a TbetaRI kinase small molecule co-complex confirms the predicted binding interactions of our small molecule inhibitor, which stabilizes the inactive kinase conformation. Our results validate shape-based screening as a powerful tool to discover useful leads against a new drug target.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Adenosine Triphosphate/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Drug Evaluation, Preclinical/methods , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Kinetics , Molecular Conformation , Phosphorylation , Protein Conformation , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...